Nmexpertiza.ru

НМ Экспертиза
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Естественный угол откоса зерна

Технология морских перевозок

Автор: Пользователь скрыл имя, 11 Декабря 2011 в 15:57, реферат

Описание работы

1Совокупность свойств груза, определяющих условия и технику его перевозки, перегрузки и хранения, называется транспортной характеристикой груза. По своим физико-химическим свойствам грузы разделяют на две основные группы: скоропортящиеся и устойчиво сохраняющиеся. Грузы можно также разделить на группы по степени огнеопасности, ядовитости, радиоактивности, обладанию определенными агрессивными свойствами — пылящие, выделяющие газы и запахи, грузы, обладающие гигроскопичностью, и так далее. Кроме того, почти все грузы обладают специфическими, присущими им свойствами, определяющими требования, которые необходимо выполнять в процессе их морской перевозки. К основным свойствам навалочных грузов относятся следующие:

Работа содержит 1 файл

Технология морских перевозок.docx

Технология морских перевозок

1Совокупность свойств груза, определяющих условия и технику его перевозки, перегрузки и хранения, называется транспортной характеристикой груза. По своим физико-химическим свойствам грузы разделяют на две основные группы: скоропортящиеся и устойчиво сохраняющиеся. Грузы можно также разделить на группы по степени огнеопасности, ядовитости, радиоактивности, обладанию определенными агрессивными свойствами — пылящие, выделяющие газы и запахи, грузы, обладающие гигроскопичностью, и так далее. Кроме того, почти все грузы обладают специфическими, присущими им свойствами, определяющими требования, которые необходимо выполнять в процессе их морской перевозки. К основным свойствам навалочных грузов относятся следующие:

Угол естественного откоса, или угол покоя. Это угол между плоскостью основания штабеля и образующей, который зависит от рода и кондиционного состояния груза. Рыхлые и пористые навалочные грузы имеют больший угол покоя, чем твердые кусковые грузы. С увеличением влажности угол покоя растет. При длительном хранении многих навалочных грузов угол покоя за счет уплотнения и слеживаемости возрастает. Различают угол естественного откоса в покое и в движении. В покое угол естественного откоса на 10-18° больше, чем в движении (например, на ленте транспортера).

Гранулометрический состав для навалочных грузов указывается в запродажных контрактах и перевозочных документах. Ряд рудных грузов и углей делится на классы в зависимости от гранулометрического состава. Гранулометрический состав груза определяет возможность применения различных схем механизации погрузочно-разгрузочных работ. Усадка — уплотнение навалочных грузов вследствие перераспределения частиц груза в массе насыпи и сдавливания нижних слоев верхними. На усадку грузов оказывают влияние свойства груза, способ нагрузки, встряхивание судна на волне, вибрация корпуса судна, длительность и условия плавания. Усадка зерна в рейсе происходит от 2,5 и 8%, но иногда достигает 11%.

Сыпучесть свойства навалочных грузов, которые при наличии свободной поверхности под воздействием качки пересыпаются с одного борта на другой. В результате этого грузовое судно может получить опасный крен и перевернуться. Проведенные опыты показали, что пересыпание грузов происходит по законам, отличным от законов перетекания жидкости. В начальный момент крена в результате действия сил сцепления частиц поверхность груза остается неподвижной, но если крен достигает такого значения, при котором угол между поверхностью насыпки и горизонтом будет больше угла покоя на 8-10°, то масса груза быстро перемещается в сторону крена. Обратного перемещения может не быть, так как крен в противоположную сторону уменьшается за счет смещения центра тяжести судна в сторону пересыпающегося груза.

Погрузочный объем — объем, занимаемый 1 тонн груза в грузовом помещении. При морской перевозке зерновых грузов погрузочный объем является критерием, по которому грузы делятся на «тяжелые» — рожь, ячмень, пшеница, горох, рис и «легкие» — овес, арахис, льняное семя и подсолнух.

Влажность — важнейший показатель состояния груза, поскольку от нее зависит самонагревание, возможность и вероятность разжижения. Влажность гигроскопических грузов находится в прямой зависимости от относительной влажности воздуха. Повышенная влажность навалочных грузов приводит к потере провозной способности флота из-за увеличения их массы, а при перевозке зерна — к его порче. Нормальная влажность экспортного зерна — 11-14%. Зерно с влажностью 16% принимать к перевозке запрещено.

Самонагревание грузов растител ьного происхождения резко ухудшает их качество и, как правило, вызывается тремя причинами: биологическим процессом «дыхания», жизнедеятельностью микроорганизмов и вредителей. При перевозке зерна и ряда других продуктов сельского хозяйства (хлопка, льна, сена) температура груза в результате самонагревания может достигать 85-90 °С, что приводит к потере товарных качеств груза.

Самовозгорание — действие внутренних источников тепла (биологических и химических процессов), которые протекают в грузе. Самовозгоранию подвержены многие грузы растительного происхождения, зерновые, волокнистые, жиры, торф, каменные и бурые угли, древесный уголь, а также некоторые руды и рудные концентраты. При «дыхании» зерна, семян, овощей и фруктов поглощается кислород и выделяется углекислый газ. Энергия «дыхания» зависит от свойства груза, но особенно увеличивается с ростом температуры и влажности. Повышение температуры и влажности способствует развитию бактерий, а наличие бактерий в растительных грузах вызывает не только самонагревание, но и самовозгорание. Жизнедеятельность микроорганизмов приводит к дальнейшему нагреванию груза. Если груз обладает малой теплопроводностью, то выделяющаяся теплота накапливается и температура повышается. Микроорганизмы гибнут при температуре груза 70° и выше, но химические реакции между кислородом, воздухом и разлагающимися растительными грузами продолжаются. Это приводит к самовозгоранию или обугливанию груза. Для предотвращения самовозгорания зерновых грузов следует удалять выделяющиеся газы и тепло, что достигается постоянной вентиляцией трюмов. В процессе хранения иперевозки ископаемых углей происходит постоянное окисление углерода, что приводит к потере качества и уменьшению количества груза. Величина этих потерь зависит от марки, сорта угля и температуры хранения.

Самовозгоранию углей способствует аэрация штабеля, наличие внешних источников тепла, таких как солнечная радиация, нагревающиеся переборки и трубы, наличие посторонних примесей, смешение разных марок, сортов и партий груза. Очень малая и чрезмерно высокая влажность углей снижает их способность к самовозгоранию. В практике морских перевозок температура углей 40-45 °С считается уже опасной.

Слеживаемость — характеризуется прочным сцеплением частиц груза и максимальной плотностью. Это приводит к потере грузом свойств сыпучести. Слеживаемости подвержены в наибольшей мере концентраты руд, руды, селитра, соль поваренная, калийные и азотные удобрения, сульфат. Причинами слеживаемости являются: сцепление частиц груза от сдавливания при большой высоте укладки; кристаллизация солей из растворов и переход соединений вещества из одних модификаций в другие; химические реакции в грузах.

Степень слеживаемости зависит от размера, формы и характера поверхности частиц груза, наличия и свойств примесей, условий хранения груза, его влажности, гигроскопичности, характера воздействия внешней среды, длительности морской перевозки и высоты укладки. Грузы, подверженные слеживаемости, следует хранить в условиях, исключающих или уменьшающих влагопоглощение. Для защиты от взаимодействия с окружающей средой эти грузы следует упаковывать в плотную воздухо- и влагонепроницаемую тару. Таким свойством обладают полимерные пленки.

Смерзаемость — свойство груза при отрицательной температуре превращаться в сплошную массу и терять свою сыпучесть. Это свойство аналогично слеживаемости груза, и по результатам они идентичны. При смерзании также происходит слипание частиц груза и тем больше и сильнее, чем мельче и более шероховата поверхность частиц груза, больше его влажность и пористость. В наибольшей степени смерзаемости подвержены полезные ископаемые — рыхлые, пористые и мелкозернистые руды, серные и медные колчеданы, влажные угли, песок, соль, апатиты, фосфориты, бокситы, медные, железные, марганцевые, свинцовые, цинковые концентраты руд и ряд других грузов. Восстановление сыпучести грузов в портах производится рыхлением при помощи вибрационных машин и пневматических молотков.

Читать еще:  Блок откоса для автокад

Спекаемость — слипание частиц груза под воздействием изменения температуры. Спекаемости подвержены перевозящиеся навалом материалы, такие как пек, гудрон, асфальт, а также агломераты руд, поступающие в трюмы судов в горячем состоянии.

Процесс спекания схож с процессом слеживаемости. Спекаемость грузов при перевозке их навалом на обычных судах предотвратить нельзя, поэтому их следует перевозить в таре или на специализированных судах. Так, например, агломерат, который при морской перевозке спекается и покрывается коркой, перевозят в горячем состоянии. Для уменьшения влияния процесса спекаемости груза строятся специальные конструкции судов, позволяющие замедлить или предотвратить охлаждение груза в пути.

2.Подготовка судна к погрузке.

Суда для перевозки должны быть подготовлены заблаговременно к погрузке в соответствии с требованиями настоящих Правил, « Наставления по предотвращению загрязнения с судов», Международной конвенции МАРПОЛ

73/78 с дополнением 1992 г.

Подготовка судна состоит из следующих операций:

  • мойка, зачистка, пропаривание танков ( цистерн), очистки и мойки насосов,

фильтров, трубопроводов с удалением остатков груза и воды

  • проверка на водотечность клинкетов, кингстонов, трубопроводов в грузовых

танках ( цистернах), палубных сальников штоковыводов грузовых и зачистных

клинкетов, плотности закрытий крышек горловин, смотровых лючков, пробок

замерных трубок, исправности работы систем дистанционного и ручного управления клинкетами грузового и зачистного трубопроводов

  • просушка и дегазация танков (цистерн) и трубопроводов с удалением запаха

ранее перевозившегося груза и моющих средств

  • проверка состояния системы орошения палубы
  • проверка приспособлений для опломбирования горловин грузовых танков

(цистерн), клинкетов и кингстонов

  • проверка работы дыхательных клапанов газоотводной системы
  • проверка исправности системы и средств пожаротушения, средств индивидуальной защиты и техники безопасности

Подготовка судна к погрузке должна осуществляться по утвержденному

капитаном грузовому и технологическому планам для конкретного вида груза, в соответствии с требованиями РД «Мойка грузовых танков и топливных цистерн танкеров»

Грузовые танки ( цистерны) должны предъявляться представителю грузоотправителя ( фрахтователя) при открытых фильтрах и клинкетах грузовых магистралей и грузовых стояков с обязательным оформление акта пригодности ( сертификата) грузовых танков ( цистерн) под погрузку.

Если условиями договора перевозки ( чартером) не предусматривается

предъявление грузовых танков (цистерн) для инспекции представителю

грузоотправителя ( фрахтователя), то капитан судна обязан пригласить

опытного сюрвейера и получить от него заключение о пригодности грузовых танков ( цистерн) к погрузке.

Перед началом погрузки в присутствии представителя грузоотправителя должны быть обжаты и опломбированы клинкеты кингстонов и забортных

отливных клапанов в грузовом насосном отделении с составлением двустороннего акта и записью в судовом журнале.

Если условиями договора перевозки ( чартером) опломбирование не предусматривается, то капитан приглашает сюрвейера для опломбирования

кингстонов с оформлением сертификата с отметкой об этом в судовом журнале

Перед погрузкой необходимо проверить надежность открытия и закрытия клинкетов с ручным и дистанционным приводом, исправность действия системы автоматического замера уровня груза.

При приеме на судно двух и более видов грузов должно быть обеспечено их разделение не менее чем двумя клинкетами ( секущим и грузовым), а при наличии на магистрали только одного клинкета дополнительно устанавливается заглушка.

При подготовке судна к погрузке все операции по сливу балластных и моечных вод должны выполняться в соответствии с требованиями Международной

конвенции МАРПОЛ 73/78 с дополнением 1992 г.

Перевозка пищевых грузов наливом на судах, перевозивших ранее этилированные нефтепродукты, допускается при условии, что в трех рейсах,

предшествующих рейсу с пищевыми грузами, перевозились неэтилированные

нефтепродукты, нетоксичные масла.

Все операции по подготовке судна к погрузке отражаются в судовом журнале и

оформляются соответствующими актами.

3Основные международные документы, которые должны находиться на борту судна (перечень документов постоянно корректируется)

  • Международная конвенция по охране человеческой жизни на море 1974 (SOLAS-74).
  • Международная конвенция по предотвращению загрязнения с судов 1973, измененная Протоколом 1978 к ней (MARPOL- 73/78).
  • Международная конвенция о грузовой марке, 1966 (ILLC-66).
  • Международные правила предупреждения столкновений судов в море, 1972 (COLREG-72).
  • Международная конвенция о подготовке и дипломированию моряков и несении вахты, 1978/1995 (STCW-78/95).
  • Международный кодекс безопасной перевозки зерна насыпью.
  • Резолюция А.715 (17). Кодекс безопасной практики для судов, перевозящих лесные грузы на палубе.
  • Резолюция А.714 (17). Кодекс безопасной практики размещения и крепления груза.
  • Резолюция А. 434 (XI). Кодекс безопасной практики перевозки твердых навалочных грузов.
  • Резолюция А.716(17). Международный кодекс морской перевозки опасных грузов (IMDG Code).
  • Международный кодекс по спасательным средствам, с поправками (LSA Code).
  • Резолюция А.787 (19). Процедуры контроля судов государством порта.
  • Руководство по международному авиационному и морскому поиску и спасанию, том 3 (IAMSAR).
  • Международное руководство по судовой медицине.
  • Сборники резолюций IMO.

VII Международная студенческая научная конференция Студенческий научный форум — 2015

ОПРЕДЕЛЕНИЕ УГЛА ЕСТЕСТВЕННОГО ОТКОСА САФЛОРА И ПРИЦЕПНИКА ШИРОКОЛИСТНОГО

  • Авторы
  • Файлы работы
  • Сертификаты

В качестве объекта исследования была принят сафлор сорта «Ак май». Влажность зерна определялась по ГОСТ 13586.5-93, и составила для сафлора 6,7±1,85 % , прицепника – 11,9 ±5 %. Различие во влажности сафлора и прицепника одной и той же смеси объясняется особенностями морфологического строения этих зерновок.

Схема экспериментальной лабораторной установки показана на рисунке 1. Проводили 10 замеров. Определили среднее значение угла естественного откоса, составило φ =42 °. Для определения массы 1000 зерен, отсчитали 10 проб по 1000 семян и взвешивали. Среднеарифметическая масса 1000 зёрен или абсолютная масса зерна сафлора (25,9±0,5) г, прицепника (18,71±0,3) г.

Рис. 1. Установка для определения

угла естественного откоса

Рис. 2. Пурка литровая ПХ-1

Натурный вес определяли с использованием лабораторной литровой пурки ПХ-1 (рис. 2). Пурки предназначены для определения натуры массы зерна в одном литре и используются в лабораториях предприятий системы хлебопродуктов и сельского хозяйства.

Определение натуры зерна на литровой пурке производили в следующем порядке. В щель мерки, закрепленной в башмак крышки футляра, вставляли нож так, чтобы окружность на верхней плоскости совпала с окружностью мерки. На нож помещали груз. На мерку надевали наполнитель, а на него цилиндр насыпки, заполненной сафлором. Осторожным нажатием пальца на рычажок замка открывали заслонку воронки, и зерно из цилиндра пересыпалось в наполнитель. Затем быстро вынимали нож из мерки, но так, чтобы не допустить ее сотрясения. После того как падающий груз, а вместе с ним и зерно сафлора упадут на мерку, нож снова вставляли в щель, но теперь до упора ручки ножа в стенку мерки. При этом зерна сафлора, лежащие на пути лезвия перерезались. Цилиндр насыпки снимали с наполнителя и закрывали отверстие воронки заслонкой. Мерку с наполнителем снимали с башмака; слегка придерживая пальцем нож, высыпали оставшееся на ноже зерно и вынимали нож из щели мерки. Мерку с зерном взвешивали на правом плече коромысла и получали показатель натуры. Результаты замеров показали, что натура сафлора – (574,23±1,98)г/л, прицепника широколистного — (368,65±1,61)г/л.

Фрикционные свойства семян

Фрикционные свойства семян сельскохозяйственных культур, как и других физических тел, характеризуются коэффициентами внутреннего и внешнего трения. Коэффициент внутреннего трения характеризует трение семян между Собой в слое и определяется углом естественного откоса. Коэффициент внешнего трения в зависимости от состояния тела (зерна) подразделяется на статический — коэффициент трения покоя и динамический — коэффициент трения движения.

Читать еще:  Как закрепить деревянные откосы

Показатели трения семян зависят от многих факторов, основными из которых являются их влажность, свойства поверхности, форма и размеры, скорость перемещения и др.

Таблица 3.7. Угол естественного откоса и коэффициент внутреннего трения.

В изучении влияния всех этих факторов на показатели трения не было необходимости, так как этот вопрос достаточно полно освещен в основополагающих работах И. В. Крагельского [257, 258, 259] и других авторов. Поэтому мы ограничились опытами по исследованию фрикционных свойств семян для условий, наиболее типичных в практике посева (стандартная влажность, движение по металлическим поверхностям), и анализом литературных данных.

Из табл. 3.7 и 3.8 видно, что семена с шероховатой поверхностью (томаты, морковь, столовая свекла и др.) имеют несколько больший угол естественного откоса, а также повышенный статический и динамический коэффициенты трения. Увеличенное значение динамического коэффициента трения у семян, томатов объясняется наличием на них опушенности. Снятие ее, как показали опыты, уменьшает значение динамического коэффициента трения до 0,25, т. е. почти в 1,5 раза.

При проектировании и расчете рабочих органов овощных сеялок как примерные можно принять значения коэффициентов трения, указанные в табл. 3.9.

Таблица 3.9. Примерные значения показателей трения семян овощных культур (влажность близка к стандартной).

  • Овощные сеялки
  • Пастбищные сеялки
  • Ручные сеялки
  • Сеялка для кассет
  • 1 Ряд
  • 2 Ряда
  • 3 Ряда
  • От 4 — 10 рядов
  • Самоходные сеялки бензиновые
  • Самоходные сеялки электро

ДДоставка сельхозтехники и запасных частей, оросительных систем, насосов во все города России (быстрой почтой и транспортными компаниями), так же через дилерскую сеть: Москва, Владимир, Санкт-Петербург, Саранск, Калуга, Белгород, Брянск, Орел, Курск, Тамбов, Новосибирск, Челябинск, Томск, Омск, Екатеринбург, Ростов-на-Дону, Нижний Новгород, Уфа, Казань, Самара, Пермь, Хабаровск, Волгоград, Иркутск, Красноярск, Новокузнецк, Липецк, Башкирия, Ставрополь, Воронеж, Тюмень, Саратов, Уфа, Татарстан, Оренбург, Краснодар, Кемерово, Тольятти, Рязань, Ижевск, Пенза, Ульяновск, Набережные Челны, Ярославль, Астрахань, Барнаул, Владивосток, Грозный (Чечня), Тула, Крым, Севастополь, Симферополь, в страны СНГ:Киргизия, Казахстан, Узбекистан, Киргизстан, Туркменистан, Ташкент, Азербайджан, Таджикистан.

Наш сайт не является публичной офертой, определяемой положениями Статьи 437 (2) ГК РФ., а носит исключительно информационный характер. Для получения точной информации о наличии и стоимости товара, пожалуйста, обращайтесь по нашим телефонам. В случае копирования, использования любого материала находящегося на сайте www.Sejalki.RU, активная ссылка обязательна, в случае печати – печатная ссылка. Копирование структуры сайта, идей или элементов дизайна сайта строго запрещено. Технические данные и иллюстрации носят рекламный характер. Указанный комплект поставки и характеристики могут отличаться от входящего в серийную поставку. Производитель оставляет за собой право вносить изменения в конструкцию изделий. Техническое оснащение и комплектацию оборудования просим уточнять у специалистов

Права на все торговые марки, изображения и материалы, представленные на сайте, принадлежат их владельцам.

Сушка и хранение семян подсолнечника

Л. Д. Комышник, А. П. Журавлев, Ф. М. Хасанова

Важным физико-механическим свойством семян подсолнеч­ника как объекта сушки является сыпучесть, характеризующаяся углом естественного откоса. Определяющее значение на сыпу­честь семян подсолнечника оказывают влажность семян, содер­жание посторонних примесей и их характер, а также поверхность, по которой перемещаются семена. Угол естественного откоса сухих семян подсолнечника колеблется от 27 до 35°, влажных — до 42°, а высоковлажных и засоренных (засоренность до 8%) достигает 55°, что значительно выше, чем у злаковых культур. Эти особенности семян подсолнечника вызывают определенные трудности при их поточной обработке. Легковесные семена, имея повышенный коэффициент внутреннего трения, на некоторых уча­стках технологической схемы передвигаются медленнее, чем зерно колосовых культур или кукурузы. Поэтому при работе с семена­ми подсолнечника трубы зерносушилок должны иметь больший диаметр и их устанавливают под большим углом наклона.

Трудности обработки семян подсолнечника связаны с физи­ческими особенностями и отличием их от злаковых культур. Так, насыпная плотность семян подсолнечника, поступающего на хле­боприемные предприятия, в зависимости от влажности и засо­ренности колеблется в пределах 326. . 440 кг/м3, т. е. вдвое мень­ше, чем у пшеницы, поэтому и в 2 раза меньше масса семян, поступающих в сушилку.

Наличие воздушной прослойки между ядром и плодовой обо­лочкой семян, а также значительное содержание жира явля­ется причиной более низкой скорости витания семян подсолнечни­ка, чем для зерна. Скорость их витания изменяется от 4 до 8,0 м/с, в то время как для риса 8,9. .9,5 м/с, пшеницы 9,0. .11,5, кукурузы 12,5. ,14,0 м/с. Поэтому во избежание выноса полно­ценных семян из коробов шахты и камеры нагрева сушилки скорость агента сушки должна быть ниже, чем при сушке зер­новых культур.

Удлиненная форма семянок — подсолнечника и сравнительно шероховатая поверхность обусловливают большую скважистость. Так, скважистость подсолнечника колеблется в пределах 60.

80%, а риса 50. .65, пшеницы 35. .45 и кукурузы 35. .55%. Следовательно, семена подсолнечника, имея большую скважис­тость, оказывают меньшее сопротивление при прохождении аген­та сушки в сушилках и сушатся быстрее, чем сесена других культур.

Гигроскопичность — одно из важнейших свойств зерна, опре­деляющих режимы его хранения и сушки. Для семян подсол­нечника как капиллярно-пористых коллоидных тел характерны все формы связи, которые, по классификации академика Л. А. Ре — биндера, подразделяются на химическую, физико-химическую и механическую. В процессе сушки семян их основные физичес­кие и химические свойства должны сохраниться, следовательно, химически связанную влагу не надо удалять.

Влажность семян подсолнечника, при которой остается хи­мически и адсорбционно связанная влага, часто называют кри­тической. Эта влага не участвует в жизненных процессах, не может быть использована большинсвом микроорганизмов для поддержания своей жизнедеятельности и поэтому не влияет на стойкость семян подсолнечника в процессе хранения. Следо­вательно, сушить семена необходимо до такой влажености, чтобы в них оставалась преимущественно адсобционно связанная вода.

Критическую влажность семян определяют по формуле:

Юг (100 — М)

Где Wr — влажность гидрофильной части,%; М — фактическая масличность, %.

Например, при критической влажности гидрофильной части 14 %, масличности 50 % критическая влажность семян подсол­нечника будет:

14 (100 — 50) Шкр= Ї00 :7%-

Критическая влажность семян высоковлажного подсолнеч­ника 6 8 %.

Равновесная влажность семян подсолнечника, т. е. влажность, при которой семена не отдают и не поглощают влагу, зависит от температуры, относительной влажности атмосферного возду­ха, масличности. Равновесная влажность семян изменяется в зависимости от относительной влажности воздуха ф по зако­номерности

Wp = 0,623 ф>14

Такая зависимость справедлива при ф = 45. 85%, и она не учитывает химического состава высокомасличных сортов семян подсолнечника.

М. И. Игольченко и В. М. Копейковский установили зависи­мость между равновесной влажностью семян подсолнечника с содержанием жира до 50% при температуре атмосферного воз­духа от 14 до 30°С и относительной влажности от 9 до 82%. Она выражается соотношением

Wp= 2,133 е0,017549- ф

Где е — основание натурального логарифма.

При всех равных условиях равновесная влажность маслич­ных культур в 2 раза меньше, чём зерновых. Это объясняет­ся меньшим содержанием в семенах масличных культур гид­рофильных коллоидов и наличием большого количества жира. С увеличением содержания масличности в семенах равновес­ная влажность подсолнечника уменьшается, так как с повыше­нием масличности уменьшатся содержание гидрофильных ве­ществ и соответственно увеличивается содержание гидрофобных.

Читать еще:  Одиночное мощение откосов насыпи

Значительное содержание оболочки в подсолнечнике и ее высокая гигроскопичность являются предпосылками для разра­ботки рациональных осциллирующих режимов — чередования сушки, охлаждения и отволаживания. Например, применение чередования интенсивной продувки и отволаживания, во время которого влага концентрируется в оболочке, приводит к интен­сификации влагоотдачи при сушке, так как влагопроводность оболочки выше, чем ядра, и зона испарения находится у по­верхности.

Равновесная влажность составных частей семян неодинако­ва: она больше у оболочки (лузги) и меньше у ядра. Равновес­ная влажность семян занимает промежуточное положение. Со­держащиеся в массе семян подсолнечника органические и сор­ные примеси обладают большой гигроскопичностью. При одной и той же относительной влажности и температуре воздуха рав­новесная влажность органических сорных примесей больше рав­новесной влажности семян в 1,8 раза.

Основными теплофизическими характеристиками, определя­ющими теплообменные свойства масличных семян, являются теп­лоемкость, коэффициенты теплопроводности и температуро­проводности. Теплофизические характеристики, определяющие скорость протекания процессов нагрева и охлаждения, различны для отдельных семянок и семенной массы, но в обоих случаях зависят прежде всего от размеров семянок, их влажности, хими­ческого состава, масличности, лузжистости и температуры. На теплофизические показатели семенной массы большое влияние оказывают количество и состав содержащихся в ней примесей.

При увеличении влажности семян подсолнечника до 17,8% теплоемкость возрастает по линейному закону. Повышение влаж­ности да 11 % приводит к увеличению коэффициента теплопроводности, дальнейшее повышение влажности не влияет на изме­нение величины этого коэффициента. Коэффициент температуро­проводности семян при увеличении влажности до 11% возрас­тает, а при дальнейшем увеличении снижается.

Значение теплофизических характеристик семенной массы го­раздо ниже, чем отдельных семянок, вследствие значительного содержания в ней воздуха.

Технология сушки семян подсолнечника

Для семян подсолнечника различают четыре состояния по влажности: сухое до 7,0%, средней сухости свыше 7,0 до 8,0%, влажное свыше 8,0 до 9,0%, сырое свыше 9,0%. В семенах сухих и средней сухости почти нет свободной влаги, и хранить их можно длительное время.

Семена подсолнечника при поступлении на хлебоприемные предприятия и маслозаводы по качеству должны отвечать требо­ваниям базисных или ограничительных кондиций (табл. 1.).

1. Базисные и ограничительные кондиции семян подсолнечника

Базисная влажность,% Ограничительная влажность,%

TOC o «1-3» h z Южная 12 15

Центральная 13 17

Восточная 14 19

* Сорная примесь 1%, маслиничная 3%.

Специфические свойства семян подсолнечника как объекта сушки, неоднородность семянки (наличие ядра, плодовой и се­менной оболочек), естественная неоднородность семян по раз­мерам, массе и влажности, низкая прочность плодовой оболочки, влагоинерционность, низкая теплопроводность, термолабильность белковой и липидной частей системы, повышенная пожарная опасность предъявляют особые требования к способу сушки и к конструкции сушильных устройств. При сушке не должно ухудшаться качество и уменьшаться выход масла, не должно происходить растрескивания лузги и увеличения масличной при­меси. Не допускается увеличение в процессе сушки кислотного и йодного чисел жира, изменение вкусовых и пишевых достоинств подсолнечного масла.

Одним из наиболее рациональных методов улучшения техно­логических своцств, сохранения качества и повышения стойко­сти семян подсолнечника в процессе хранения является тепло­вая сушка. 6

При сушке семян подсолнечника большое значение имеет не только температура нагрева семян, но и продолжительность ее воздействия. Значения коэффициентов теплопроводности, температуропроводности для единичной семянки значительно от­личаются от тех же показателей для плотного слоя. Для быст­рого нагрева семян необходима такая конструкция сушильного аппарата, в котором бы обеспечивался нагрев каждой единич­ной семянки в отдельности. В этом случае можно значительно поднять температуру агента сушки при снижении продолжитель­ности нагрева до нескольких секунд. Кратковременное высу­шивание семян подсолнечника при более высокой температуре предпочтительнее, чем медленное высушивание при низкой.

Чтобы превратить 1 кг воды в пар, необходимо затратить около 2680 кДж тепла. При сушке фактически затрачивается на испарение 1 кг воды 5020. .6280 кДж в шахтных сушилках и 3670. .4490 кДж в рециркуляционных. При сушке семян подсол­нечника необходим обоснованный выбор температурных режи­мов. Сушка должна протекать с минимальными затратами тепла и электроэнергии, с максимальной скоростью удаления влаги при наилучших технологических свойствах высушенного мате­риала.

Сушка представляет собой комплекс одновременно проте­кающих и влияющих друг на друга явлений. Это — перенос теп­ла от агента сушки к высушиваемому материалу через его повер­хность, испарение влаги, перемещение влаги внутри материала, перенос влаги с поверхности материала в сушильную зону.

На испарение влаги влияют в основном два процесса: влаго — проводность и термовлагопроводность, которые характеризуют внутренний тепло — и влагоперенос во влажном материале. При испарении влаги поверхностные слои подсушиваются. Создается градиент влагосодержания, т. е. внутри материала влаги больше, чем на поверхности. Это явление приводит к перемещению влаги из внутренних слоев к поверхностным слоям и называется вла — гопроводностью. Причем это перемещение тем интенсивнее, чем выше температура материала. Отсюда вытекает основное прави­ло сушки: необходимо в начале сушильного процесса поддер­живать максимально допустимую температуру материала, при которой не наблюдается ухудшения пищевых, технологических, семенных и других достоинств семян подсолнечника.

Но влага перемещается не только благодаря градиенту вла­госодержания, она перемещается и благодаря градиенту темпера­тур (термовлагопроводности), т. е. влага перемещается от мало­нагретого участка к более нагретому, или, иными словами, влага перемещается по направлению потока тепла.

Применение того или иного способа сушки может способство­вать в одном случае совпадению направления перемещения влаги как в результате влагопроводности, так и термовлагопроводности, а в другом случае процесс испарения влаги в результате влагопро­водности тормозит процесс испарения влаги в результате термо­влагопроводности. В первом случае процесс испарения влаги будет протекать значительно интенсивнее, чем во втором. Для того чтобы эти процессы испарения влаги совпадали по направлению, необходимо, чтобы температура поверхности семянки подсолнеч­ника была ниже температуры внутри ядра. Сушка будет зна­чительно тормозиться, когда температура поверхности семянки выше температуры внутри ядра.

При сушке семян подсолнечника в шахтных прямоточных сушилках явление термовлагопроводности препятствует переме­щению влаги изнутри к поверхности и интенсивность потока влаги равна разности между интенсивностью потока влаги в результате влагопроводности и интенсивностью потока влаги в результате термовлагопроводности. При рециркуляционной сушке влага испаряется как под воздействием процесса влаго­проводности, так и под воздействием термовлагопроводности.

Температура материала в процессе сушки не, равна темпера­туре агента сушки. В первом периоде сушки температура ма­териала равна температуре смоченного термометра, поэтому можно применять высокие температуры агента сушки. Например, при температуре воздуха 200° С и влагосодержании его 0,008 кг/ кг температура смоченного термометра, а следовательно, и темпе­ратура материала равна 47° С. При повышении температуры воздуха до 350° С при данном влагосодержании температура смоченного термометра увеличивается до 60° С.

При кратковременном нагреве материала температуру агента сушки можно значительно повысить. Пределом является темпе­ратура, при которой температура испарения (температура смо­ченного термометра) будет равна или близка к допустимой тем­пературе нагрева материала.

При высокой температуре агента сушки прогрев семян до допустимых температур и испарение влаги с поверхности проис­ходят в течение нескольких секунд. Дальнейший подвод тепла нецелесообразен. Таким образом, для максимального использо­вания тепла и сохранения качества семян рекомендуется при­менять максима льно возможные температуры агента сушки при небольшой продолжительности нагрева.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector