Nmexpertiza.ru

НМ Экспертиза
21 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Рекомендации по укреплению откосов сооружений мостовых переходов

Рекомендации

Документ:Рекомендации
Название:Рекомендации по укреплению откосов сооружений мостовых переходов и насыпей на прижимных участках рек наброской из каменных материалов
Начало действия:1979-01-01
Дата последнего изменения:2008-10-31
Вид документа:Рекомендации
Область применения:В настоящих Рекомендациях, предназначенных для использования при проектировании мостовых переходов и насыпей, рассматривается методика, расчета набросных укреплений при защите откосов сооружений постовых переходов (струенаправлящих дамб, поперечных регуляционных сооружений и поименных подходов) и насыпей на прижимных участках рек от продольных течений. Методика включает определение требуемой крупности однородного камня или деформации укрепления при использовании неоднородного по крупности материала заданного гранулометрического состава, а также необходимой толщины укрепления. В работе приведены рекомендации по назначению определяющих силовых воздействий на откосные сооружения, получению исходных данных для проектирования укрепления, расчету срезки выпуклого берега и компоновки поперечных сооружений для уменьшения силового воздействия потока на откосе насыпей и берегов на прижимах рек.
Разработчики документа:ЦНИИС(82),

По формуле (6) глубина размыва равна Δ h = 1,14 · 3,8 — 4,6 м/с.

По графику (см. рис.4) при п (1 + m) = 0,14;

и определяем η = 1,26.

По формуле (6) глубина размыва равна Δ h = 1,26 · 3,1 — 3,50 = 3,90 — 3,50 = 0,40 м.

За расчетный размыв принимаем, согласно п.2.7, Δ h = 0,40 м.

Пример 3. Для условий примера 1 определить глубину общего размыва у подошвы насыпи, стесняющей русло со стороны вогнутого берега. Средняя скорость потока в русле возросла с 1,8 м/с до 2 м/с.

Согласно расчету (см. пример 1), К r = 1,13; по формуле (2) скорость потока у подошвы насыпи равна v п = 2 × l,13 = 2,26 м/с. Тогда по формуле (11) глубина общего размыва у подошвы насыпи равна

3. ОПРЕДЕЛЕНИЕ ИСХОДНЫХ ДАННЫХ ДЛЯ ПРОЕКТИРОВАНИЯ УКРЕПЛЕНИЯ ОТКОСОВ СООРУЖЕНИЙ МОСТОВОГО ПЕРЕХОДА

3.1. За расчетную глубину потока h п у подошвы откосов сооружений мостового перехода принимают:

а) для поперечных сооружений в русле (шпор) — бытовую глубину, определенную по материалам изысканий или согласно пп.2.1-2.2;

б) для подходной насыпи и поперечных сооружений на пойме (траверсов) — глубину на пойме в месте предполагаемого расположения сооружения с учетом подпора от стеснения пойменного потока согласно Рекомендациям [4];

в) для верховой струенаправлящей дамбы — бытовую глубину потока с учетом общего размыва под мостом и возможных переформирований русла в результате руслового процесса; при дифференцировании укрепления дамбы на рассматриваемых вертикалях выше створа перехода необходимо учесть подпор.

3.2. Расчетную скорость потока vп у подошвы поперечных сооружений определяют в зависимости от угла примыкания сооружений к защищаемым берегу или насыпи (рис. 5) по формулам

Рис.5. Поперечное сооружение: 1- расчетный створ; 2 — верх сооружения

при 90 º ≥ α ≥ 45 º

;

,

где vп(б) — скорость потока в бытовых условиях до устройства поперечных сооружений на вертикали у подошвы головной часы сооружения» определяемая для руслового потока по формулам (1) или (2), на пойменных участках — по формуле (18);

Lр — расчетная длина поперечного сооружения, определяемая по формуле

;

L — длина поперечного coopужения равна cpeдней длине его сечения под водой и створе, совпадающем с его продольной осью и определяется по формуле

;

LН — длина поперечного сооружения понизу вдоль его продольной оси.

3.3. При устройстве поперечных (сооружений расчетную скорость у защищаемых насыпи или берега определяют как максимальную скорость течения в водоворотной зоне по формуле

3.4. При отсутствии поперечных вооружений расчетную скорость потока на вертикалях у подошвы подданной насыпи определяют по формуле, приведенной в работе [4].

,

h бер, v бер — глубина и скорость на границе руслового и пойменного потока в рассматриваемом створе, отстоящем на расстоянии X от оси перехода (рис.6);

B пх, Q пх i — ширина пойменного участка от русла до подошвы насыпи, расположенной на расстоянии X от оси перехода, в расходе проходящий в этом сечении; указанные величины определяют по Рекомендациям [4].

мост перекрывает только русло) v п рассчитывают по формуле (1) для двух вариантов сечения русла под мостом: до размыва и после размыва с наибольшей глубиной потока у подошвы дамбы (если это возможно по прогнозу плановых деформаций). К расчету принимают наибольшую скорость v п;

со срезкой) расчетную скорость определяют по формуле

,

где Q пм i — расход воды, проходящей на пойменной части моста (со стороны рассматриваемой струенаправляющей дамбы) шириной l п i .

,

ПРЕДИСЛОВИЕ

Настоя щие Методические рекомендации разработаны в развитие положений «Рекомендаций по проектированию и сооружению земляного полотна на прижи мных уча стках рек», введенных в действие приказом Минтрансстроя Л-1738, о гибких железобетонных покрытиях для защиты откосов транспортных сооружений и склонов берегов рек от действия водного потока.

В данной работ е приведены технические характеристики гибких железобетонных покрытий различных типов, у словия и области и х применения, рассмотрены вопросы проектирования покрытий с указанием необходимых расчетных формул, даны рекомендации по изготовлению элементов покрытий и производству монтажных работ на объекте строительства.

Методические рекомендаци и разработаны на основании теоретических, лабораторных и технологических исследований, а также опыта проектирования защитных конструкций институтами ЦНИИС, Гипротрансмост, Сибгипротранс, Сибгипроречтранс Минречфлота РСФСР, ЧерноморНИИпроект Минморфлота СССР, Гидропроект Минэнерго СССР и строительства объектов трестами Тю мен ьстройпуть, Дондорстрой, Куйбышевдорстрой, Запсибгидрострой, Тындатрансстрой, Мостострой 8, Черноморгидрострой, Запорождорстрой Миндорстроя УССР и Мостострой КазССР.

Работа выполнена в соответстви и с программой решения научно-технических проблем 0.85.01.Н4а и 0.54.01.Н13, утвержденных постановлением ГКНТ при Совете Министров СССР.

Метод ические рекомендации разработаны в лаборатории постройки речных сооружений ЦНИИСа инж. Юдиным Л.Н., кандидатами техн. наук Высоцким А.Ф., Плакидой М.Э. и инж. Лагутиной Т.А.

Замечания и предложения просьба направлять по адресу: 129320, Москва, ул . Кольская, д. 1. Всесоюзный ордена Октябрьской Революции научно-исследовательский институт транспортного строительства.

Зав . отделением транспортных гидротехнических сооружений Кузнецов А .И.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1. 1 . Гибкие покрытия откосов состоят из отдельны х жестких ж елезобетонных элементов, соединенных между собой пластическими связями, вследствие чего в одних и тех же условиях эксплуатации требуется меньшая масса покрытий по сравнению с отдельно лежащими несвязанными элементами и допустимы ограниченные деформации грунта откосов.

Г ибкие плиты и блоки решеток, из которых монтируется покрытие, практически не испытывают изгибающих моментов. Их можно делать крупногабаритными и тонкими, что имеет большое экономическое значение при индустриальном изготовлении сборных элементов и механизированном монтаже покрытия на объекте строительства.

1.2 . В Методических рекомендациях рассматриваются вопросы проектирования и строительства гибких железобетонных покрытий при защите от размыва течением или от повреждений волнами грунтовых откосов и подошв насыпей подходов к мостам на железных и автомобильных дорогах всех категорий, конусов у мостов, надводных и подводных склонов и подошв склонов берегов в случае расположения земляного полотна дорог вдоль рек, при защите от размыва течением оснований регуляционных сооружений на мостовых переходах, а также при защите от размыва дна у причалов потоком, создаваемым движителями судов. Методические рекомендации могут быть использованы также при проектировании и строительстве защитных одежд берегов небольших внутренних водоемов или водохранилищ в их выклинивающихся частях.

1.3 . Методические реком ендации не касаются вопросов проектирования и строительства покрытий при защите откосов судоходных, водопроводных, ирригационных каналов и водоотводных канав.

1.4 . Вопросы во здействия на гибкие покрытия судовых волн в настоящей работе не рассматриваются.

1.5 . Методические рекомендации применимы при обычно выполняемых двух стадиях проектирования (технический проект, рабочие чертежи), а также, в случае необходимости, при составлении технико-экономического обоснования.

1.6. Предусматр ивается, что при проектировании и строительстве гибких покрытий должны учитываться также указания действующих нормативов и рекомендаций, приведенных в списке литературы.

2. УСЛОВИЯ ПРИМЕНЕНИЯ ГИБКИХ ЖЕЛЕЗОБЕТОННЫХ ПОКРЫТИЙ

2.1 . Для установления возможности применения гибких железобетонных покрытий должны быть использованы материалы изысканий и предварительные проектные соображения.

2.2 . Возможность применения гибких покрытий определяется следующими условиями:

сред ина расчетная скорость течения потока не должна превосходить 6 м/с;

в ысота ветровых волн, воздействующих на защищаемый откос, не должна превышать 0,80 — 1,00 м (в зависимости от крутизны откоса);

грунт тела насып и, откосы которой защищаются, а также его плотность отвечают требованиям, предъявляемым СН 449-72 [1];

защищаемый откос не подвержен воздействиям льда толщиной более 1 м;

крут изна защищаемого откоса не превосходит 1:2;

температура во здуха в районе расположения защищаемых объектов не ниже минус 60 °С;

глуб ина воронок, образующихся при размыве оснований земляных сооружений, не превышает 4 м;

выбор покрытия обоснован технико -экономическими расчетами.

3. ИСХОДНЫЕ ДАННЫЕ ПРИ ПРОЕКТИРОВАНИИ

3.1 . Для опреде ления расчетных элементов ветровых волн, воздействующих как на верховую, так и низовую стороны пойменных подтопляемых насыпей подходов к мостам, необходимо знать возможные длины разгона волн при различных направлениях ветра, а также глубины воды во время паводков по волноопасным направлениям. Исходными материалами для этого могут служить карты в масштабе 1:10000 — 1:100000 района расположения мостового перехода, а также планы в горизонталях, нанесенных не реже чем через 1 м для равнинных и 2 м для предгорных и горных условий.

3. 2 . Значения скоростей течения паводковых вод вдоль пойменных насыпей, воздействующих на их откосы и подошвы, могут быть установлены при наличии детального плана в горизонталях в масштабах 1:1000 при площади съемки до 50 га и 1:2000 при площади съемки свыше 50 га района расположения мостового перехода. При этом по длине должно быть полностью охвачено расположение пойменных насыпей подходов к мостам и регуляционных сооружений, не менее чем по 200 м в каждую сторону от паводочного уреза воды на берегах реки в створе мостового перехода, а по ширине — расстояние между границами разлива наибольшего паводка. На плане должно быть показано расположение все х сооруж ений мостового перехода и русла реки с направлением течения.

3.3 . Пр и проектировании покрытий для защиты от размыва течением откосов насыпей на прижимных участках и в излучинах рек, вдоль которых расположено полотно дороги, необходимо иметь план в горизонталях в масштабе 1:500 — 1:1000, на котором должны быть показаны русло реки на протяжении всего защищаемого участка и всей излучины, а также полотно дороги.

Пом имо этого необходимо иметь профили поперечного сечения земляного полотна дороги, склонов берега и русла реки на всем протяжении защищаемого участка не реже чем через 50 м.

3.4 . Для про ектирования расположения в плане одежды, защищающей от размыва основания отдельных регуляционных сооружений или их частей на мостовых переходах, требуется дополнительный план в горизонталях в зависимости от размеров защищаемых объектов, охватывающий со всех омываемых потоком сторон сооружения полосу шириной, равной (считая от бровки сооружения) десяти глубинам воды в подошве откосов при расчетном паводке.

3.5 . Пр и проектировании у причалов карт покрытия, защищающих грунт от размыва движителями судов, необходим план подводного склона реки в масштабе 1:200 — 1:500 в горизонталях через 1 м с охватом полосы шириной (считая от кордона причала), равной 30 м, а для проектирования расположения штабелей конструкций — такой же план берега реки. По длине планом должна быть охвачена вся причальная линия, и на нем показаны причалы.

3.6 . Для проектирования защитных одежд откосов насыпей сооружений и склонов берегов рек, а также для определения глубины воронок размыва должны быть известны инженерно-геологическая характеристика и гранулометрический состав грунтов в защищаемых от размыва сооружениях, берегах, основаниях и подошвах сооружений, а в случаях связных грунтов — расчетное сцепление, устанавливаемое испытаниями. Анализ грунтов производится согласно ГОСТ 12536-79 [ 2 ].

3.7 . При про ектировании защитных одежд берегов рек требуется, кроме данных, указанных в п. 3.8 , гидрогеологическая характеристика берегов.

Г идрологические и гидравлические данные

3.8 . Во всех случа ях применения гибких железобетонных покрытий требуются данные о характере (дождевые, от таяния снегов), о времени наступления и продолжительности паводков в течение года, а также сведения об отметках наибольшего, расчетного, среднего и низкого меженного уровней воды в месте строительства объекта.

3.9 . Для опред еления скорости потока вдоль пойменных насыпей подходов к мосту, воздействующего на откосы, и глубины возможного размыва поймы у подошвы откосов обходимо знать: длину отверстия моста; расчетный и наибольший расход всего потока, проходящего через отверстие моста; расходы воды, проходящей в русловой части отверстия моста, при отсутствии стеснения через часть живого сечения, перекрываемую отверстием моста, и в нестесненных условиях по каждой из пойм; расчетную ширину разлива паводочной воды; продольный уклон нестесненного потока.

3 .10 . При проектировании защиты откосов насыпей на прижимных участках и склонов берегов рек в излучинах, а также при проектировании защиты от размыва их подошв должна быть известна средняя скорость на вертикали в подошве склона вогнутого берега при заполнении русла в бровках излучины.

3 .11 . Для расчета местного размыва у головы односторонней струенаправляющей дамбы требуются следующие данные: полный расчетный расход потока; расход воды, проходящей по ширине отверстия моста в бытовых услови ях; глубина воды до размыва у головной части дамбы; наибольшее значение средней скорости под мостом, определяемое при расчете общего размыва; значение средней скорости нестесненного потока в бытовых условиях.

Читать еще:  Расчет устойчивости откоса plaxis

3.12 . Для расчета м естного размыва при двухсторонних струенаправляющих дамбах нужны такие данные: глубина воды до размыва у головной части дамбы; расход на нестесненной части потока, состоящей из прилегающих к данной дамбе поймы и части русла до линии наибольших глубин; расход на части отверстия, прилегающей к данной дамбе; наибольшее значение средней скорости на части отверстия моста, прилегающей к данной дамбе, считая от вертикали на наибольшей глубине; средняя скорость в бытовых условиях на нестесненной части потока, состоящей из прилегающих к данной дамбе поймы и части русла до вертикали на наибольшей глубине.

3.13 . Дл я расчета глубины размыва у головной части траверса необходимо знать глубину воды в голове траверса до размыва и среднюю скорость течения набегающего потока на вертикали у головной части траверса.

3 .14 . При проектировании защиты дна у причалов от размыва движителями судов должен быть известен наиболее низкий уровень воды у причалов в течение периода судоходства.

3.15 . Во всех случаях пр именения гибких покрытий, за исключением тех, когда покрытия находятся всегда под водой, требуются следующие сведения: характеристика температурного режима воздуха; максимальная и минимальная годовые температуры; продолжительность жаркого и холодного периодов года.

3.16 . При проектиров ании защитных одежд откосов и их подошв от воздействия ветровых волн и для определения расчетных элементов последних необходимо иметь данные береговых или материковых метеостанций о наблюденных максимальных скоростях ветра по всем восьми румбам (С, СВ, В, ЮВ, Ю, ЮЗ, З, СЗ) по годам за многолетний (не менее 25 лет [ 3 ]) период наблюдений и по месяцам, в течение которых возможны паводки с глубинами на поймах, обеспечи вающим и волнообразование.

3 .17 . Для проектирования защитных покрытий откосов грунтовых сооружений мостовых переходов необходимо знать поперечные сечения этих сооружений и крутизну откосов, а для проектирования траверсов, кроме того, их длину и угол косины их продольной оси к направлению течения.

3.1 8 . При проектировании защитных покрытий дна у причалов требуются следующие данные: поперечные сечения причалов, типы судов, которые будут пришвартовываться к причалам, количество и диаметр винтов, мощность движителей, наименьшая возможная глубина воды, считая от оси винта до дна, наибольшее возможное число оборотов винта при швартовке и отчаливании судов, ширина судов.

4. РЕКОМЕНДУЕМЫЕ КОНСТРУКЦИИ ПОКРЫТИЙ, ИХ НАЗНАЧЕНИЕ И КОМПОНОВКА

4 .1 . Гибкие покрытия рассматриваются как волногасящие и противоразмывные элементы сооружений, которые по св о ей значи мости могут быть п риравнены к гидротехническим речным сооружениям IV класса.

4.2 . Гибкие покрытия подра зделяются на сплошные плиты и решетчатые с ячейками, образованными взаимно пересекающимися гирляндами. Конструкция состоит из отдельных жестких железобетонных элементов, объединенных посредством пластических связей из арматурной стали в полимерной оболочке * . Между отдельными элементами образуются линейные шарниры, благодаря чему конструкция способна вписываться в криволинейные поверхности, которые могут образовываться на технологических операциях и в период эксплуатации покрытий [ 4 ].

* Изобретение. Свидетельство № 251463. Авторы: Юдин Л.Н., Петрашень И.Р., Элексон Г.З.

4 .3 . В пластических связях сталь связи на участке длиной 115 мм (рис. 1 ) находится в эластичной оболочке толщиной 2 мм из термо- и фотостабилизированного полиэтилена высокой плотности, наносимого термопрессованием. Эта оболочка позволяет стали расширять зону пластических деформаций и предохраняет арматуру от коррозии. У полиэтиленовой оболочки на концах выполнены специальные запорные шайбы, исключающие возможн ость п рохода влаги по контуру полиэтилен — бетон внутрь бетона при изменении температуры в период эксплуатации.

Рис . 1 . Полиэт иленовая оболочка стержня арматуры

4.4 . Гибкие покрытия набир аются из отдельных сборных элементов (гибких плит и блоков) заводского изготовления. Типоразмеры плит и блоков, их масса, расход основных материалов на 1 м 2 покрытия и допустимые значения воздействующих на них факторов приведены в табл. 1 .

17.8. Конструкции регуляционных сооружений на мостовых переходах

Учитывая высокую стоимость автомобильных дорог и, тем более мостовых переходов, при проектировании всегда следует уделять особое внимание использованию местных дорожно-строительных материалов с целью максимально возможного снижения сметной стоимости строительства этих объектов. Только в случае отсутствия на месте необходимых материалов или недостаточной их прочности применяют более дорогие привозные или искусственно приготовляемые материалы. Наиболее часто имеется возможность использования таких местных материалов как грунт, дерн и камень. Эти материалы имеют определенную сферу своего применения, поэтому при строительстве мостовых переходов материалы привозные используют почти всегда.

Местные грунты, пригодные по своим физико-механическим свойствам для возведения сооружений мостовых переходов (насыпей подходов, струенаправляющих дамб, траверсов, строительных площадок и т.д.), являются одним из основных видов строительных материалов, всегда используемых в значительных объемах при строительстве. В качестве источников снабжения строительства местными грунтами используют следующие:

грунты из выемок автомобильных дорог на спусках с коренных берегов долины на поймы. Эти грунты обычно используют для возведения пойменных насыпей подходов к мостам;

грунты срезок пойменных берегов (искусственных уширений русел) наиболее часто используют для возведения струенаправляющих дамб и участков пойменных насыпей на ближайших подходах к мостам;

грунты искусственных спрямлений русел;

Грунты из близлежащих к месту перехода сосредоточенных грунтовых резервов и карьеров, располагаемых за пределами пойм реки. Эти грунты доставляют к месту строительства, как правило, автовозкой;

грунты из пойменных карьеров, размещаемых вблизи от строящихся мостовых переходов. Такие карьеры не допускается размещать с верховой стороны насыпей подходов;

грунты из русловых карьеров нередко используют при возведении земляных сооружений мостовых переходов средствами гидромеханизации. Этот высокоэффективный способ строительства является привлекательным особенно при больших потребных объемах грунта. Однако этот вид карьеров является опасным для нижележащих инженерных сооружений на реках (мостов, переходов коммуникаций, водозаборов и т.д.), поэтому для русловых карьеров, обычно размещаемых ниже по течению от строящихся мостов, обязательно выполняют прогнозы их ожидаемого вредного воздействия на другие речные сооружения и объекты.

Грунтовые сооружения мостовых переходов требуют обязательного укрепления их откосов от вредного воздействия водного потока в паводки. Для этих целей можно использовать дерн или камень, которые, несмотря на их относительно невысокую стоимость, характеризуются низкой степенью механизации строительных работ.

Дерн используют для укрепления нагорных канав, притрассовых кюветов и резервов, а также не подверженных волнобою, ледовым воздействиям и продольным течениям откосов. Дерн чаще всего используют для укрепления низовых откосов подходов к мостам, пойменных откосов струенаправляющих дамб и низовых откосов траверсов.

Каменные наброски, поддающиеся частичной механизации строительных работ, нередко используют для укрепления откосов насыпей подходов, струенаправляющих дамб, траверсов и подтопляемых строительных площадок и обязательно используют для укрепления их подошв в виде каменных рисберм, рассыпающихся и защищающих откосы в ходе размывов.

В качестве привозных материалов используют: камень (при отсутствии местного), цементобетон, асфальтобетон, сборные железобетонные плиты и другие железобетонные элементы, изготавливаемые на заводах индустриальным способом, геотекстиль, арматуру и т.д. На крупных мостовых переходах и больших объемах строительных работ часто создают собственные асфальтобетонные (АБЗ), цементобетонные (ЦБЗ) и заводы железобетонных конструкций (ЖБК).

Откосы пойменных подходов и струенаправляющих дамб наиболее подвержены опасным воздействиям водного потока, особенно с верховой стороны или со стороны русла: волнобой, продольные течения, ледовые воздействия, особенно опасные для речных откосов струенаправляющих дамб.

Откосы пойменных насыпей наиболее часто укрепляют одерновкой (рис. 17.21, а) (при незначительной волне, ледоходе и продольных течениях), каменной наброской (рис. 17.21, б) и капитальными бетонными или железобетонными плитными конструкциями из монолитного бетона или из сборного железобетона (рис. 17.21, в).

Рис. 17.21. Конструкции укреплений откосов пойменных насыпей: а — одерновкой; б — каменной наброской; в — плитными конструкциями, h — глубина местного размыва; 1 — обсыпка поверхности откоса песчаных насыпей землей слоем 6-10 см; 2 — слой щебня (гравия) толщиной 15 см или мха толщиной 5 см; 3 — бетонный упор; 4 — рисберма

В настоящее время чаще всего используют конструкции укреплений, обеспечивающие высокую степень индустриализации и механизации работ: монолитные или сборные железобетонные плиты, укладываемые по слою щебеночной или гравийной подготовки или каменные наброски. Для предотвращения заиления подготовки, выполняющей роль фильтра, в последнее время ее стали устраивать по слою геотекстиля, обладающего высоким коэффициентом фильтрации, но не пропускающим мелкие частицы грунта насыпи.

Капитальные плитные конструкции укрепления подтопляемых откосов обязательно рассчитывают на местную их устойчивость при работе совместно с грунтовым основанием под воздействием волнобоя по формуле (17.4).

Подошвы насыпей подходов могут подвергаться воздействию потока с верховой стороны насыпи. Один из наиболее распространенных способов укрепления подошв откосов пойменных насыпей — это устройство каменных рисберм (рис. 17.22, а). Потребные объемы рисберм устанавливают, исходя из ожидаемых размывов у подошвы откосов, а минимальную крупность камня — исходя из расчетных скоростей течения вдоль подошвы. Минимальную крупность камня определяют по ориентировочному выражению:

Рис. 17.22. Конструкции укрепления подошв откосов насыпей от размыва: а — каменная рисберма; б — тюфячная конструкция; в — габионный ковер; г — укрепление по типу «погребенного откоса»; hb — глубина местного размыва; L — длина тюфяка

где

d — минимальная крупность камня рисбермы, м;

V — средняя скорость течения вдоль откоса насыпи, м/с.

Следует учитывать, что каменная рисберма способна эффективно защищать подошвы откосов лишь при ожидаемой глубине местного размыва (считая от поверхности земли) не более 3 м. В противном случае необходимо предусматривать иные конструкции укрепления подошв.

Наиболее подвержены размывам верховые части струенаправляющих дамб и траверсов. Местные размывы у голов струенаправляющих дамб нередко приводят к их разрушению. Подошвы голов струенаправляющих дамб и траверсов можно укреплять каменными рисбермами (рис. 17.22, а), тюфячными бетонными или железобетонными конструкциями (рис. 17.22, б), габионными коврами или конструкциями (рис. 17.22, в) и, наконец, капитальными укреплениями типа «погребенного откоса».

Каменная рисберма (см. рис. 17.22, а) является весьма распространенным и достаточно эффективным способом защиты подошв откосов от размывов. Однако сфера ее применения ограничена весьма небольшими ожидаемыми глубинами размывов у откосов (до 3 м).

Так называемые «гибкие» железобетонные тюфяки (см. рис. 17.22, б) на самом деле вовсе не являются гибкими и их опускание в ходе размывов сопровождается вывалами грунта из-под укрепления, которые увлекают за собой тюфяк. Он разрывается в продельном и поперечном направлениях и даже отрывается от анкерного бруса. Поэтому железобетонные тюфяки целесообразно укладывать вдоль потока отдельными коврами длиною по 10-15 м «в перехлест», но лучше с погружением сразу же в рабочее положение. Значительно лучше работают специально сконструированные гибкие бетонные покрытия, так называемые «шоколадки ЦНИИС» (ВНИИ транспортного строительства), промышленное производство которых уже налажено.

Простыми и по настоящему гибкими являются габионные тюфяки, изготавливаемые из камня, заключенного в металлическую сетку из оцинкованной проволоки (см. рис. 17.22, в). Габионные тюфяки для укрепления подошв откосов подтопляемых насыпей и регуляционных сооружений в настоящее время используют сравнительно редко в связи с большими объемами затрат ручного труда на их изготовление.

Укрепления по типу «погребенного откоса» (см. рис. 17.22, г), устраиваемые на всю глубину ожидаемого местного размыва из сборных железобетонных плит, монолитного бетона или асфальтобетона являются наиболее эффективными. Однако при их устройстве ниже уровня меженных вод возникают определенные технологические трудности, к счастью, преодолимые (укладка железобетонных тюфяков по льду замерзшей реки, укладка по спланированному откосу вымораживанием, раскатка гибких защитных покрытий по спланированному подводному откосу и т.д.).

Потребные объемы защитных каменных рисберм, длины габионных тюфяков и глубины заложения укреплений по типу «погребенных откосов» определяют, исходя из возможных местных размывов у голов струенаправляющих дамб и траверсов.

Глубины общего размыва определяют одним из следующих способов.

По формуле И.А. Ярославцева:

для связных грунтов

для несвязных грунтов

V — скорость набегания потока, для криволинейных струенаправляющих дамб практически равная скорости потока на пойме под мостом, м/с;

a — угол набегания потока на откос;

m — крутизна откоса;

g — ускорение силы тяжести, м/с 2 ;

Vнep — неразмывающая средняя скорость для связных грунтов, в которых развивается местный размыв, м/с;

d — крупность несвязного грунта, принимаемая по наиболее крупным фракциям, содержащимся в размываемом грунте в количестве 15-20 %, м.

При использовании расчетных формул И.А. Ярославцева делается допущение о сохранении той же природы местного размыва и у голов струенаправляющих дамб (которые рассматриваются как относительно мелкие, но широкие препятствия), что и для глубоких, но относительно узких мостовых опор.

Исследования последних лет, выполненные Мостафой Гхоламом, показали, что природа местного размыва у голов струенаправляющих дамб связана не столько с набеганием потока на голову дамбы, сколько с обтеканием ее пойменным потоком с большими скоростями. При этом у голов дамб всегда образуется сосредоточенный перепад уровней, определяющий соответствующее резкое увеличение скоростей потока.

Учитывая это, величину местного размыва у голов струенаправляющих дамб можно определять по теоретико-эмпирической формуле Мостафы Гхолама:

где

— перепад уровней у головы дамбы, м;

Читать еще:  Внутренний откос выемки это

b — степень стеснения потока;

Vnб — бытовая скорость течения на пойме, м/с;

hn — глубина потока на пойме перед струенаправляющей дамбой, м;

d — крупность размываемого несвязного грунта (для связных грунтов вводят эквивалентную крупность по сопротивляемости размыву несвязного грунта), м.

Длину гибкого тюфяка определяют по формуле:

где

hв — глубина воронки местного размыва, м;

mT — крутизна откоса размыва, прикрываемая гибким тюфяком.

Обычно углы наклона тюфяков составляют 60-70°. При расчетах можно принимать mT = 1, откуда lT = 1,5hв.

Наиболее эффективно работают гибкие тюфяки из габионных ковров. Они сразу же прикрывают образующиеся размывы.

Достоинством укреплений тюфяками из сочлененных бетонных блоков является высокая степень индустриализации и механизации работ. Однако между бетонными плитами имеются довольно большие зазоры, поэтому последние укладывают либо на достаточно крупные грунты — гальку, гравий, либо по слою геотекстиля. Кроме того, следует иметь в виду, что в ходе размыва грунт, обрушающийся из-под укрепления, увлекает за собой тюфяк, в результате чего в сочленениях и анкерах возникают значительные разрывающие усилия. Поэтому последние рассчитывают не только на собственный вес тюфяка, но и на разрывающие усилия, возникающие за счет сил трения при обрушении грунта из-под тюфяка. При этом усилие в анкере Рр можно определить по формуле И.А. Ярославцева:

где

GT — вес тюфяка с учетом сил взвешивания;

f » 0,5 — коэффициент трения тюфяка по грунту.

Так как любые конструкции укреплений могут повреждаться, особенно при проходе высоких паводков, то для обеспечения безаварийной работы всех сооружений мостового перехода требуются постоянные эксплуатационные мероприятия по содержанию и ремонту укреплений.

Для обеспечения выезда на струенаправляющие дамбы машин и механизмов, а также для доставки строительных материалов и конструкций при производстве ремонтно-восстановительных работ ширину струенаправляющих дамб поверху обычно принимают не менее 3,0 м (рис. 17.23).

Для складирования материалов и обеспечения разворота автотранспорта головы дамбы уширяют, а для обеспечения въезда с дороги на дамбу земляное полотно на участке высокой насыпи устраивают с бермами шириною не менее 3,0 м.

Рис 17.23. Конструкция струенаправляющей дамбы: а — план дамбы и подходов к мосту на участке сопряжения пойменной насыпи с проездом на мосту; б — поперечный профиль дамбы; в — поперечный профиль подходов

Полное меню
Основные ссылки

На правах рекламы:

Вернуться в «Каталог СНиП»

Методические рекомендации Методические рекомендации по оформлению материалов инженерно-гидрологических обоснований и расчетов мостовых переходов.

МИНИСТЕРСТВО АВТОМОБИЛЬНЫХ ДОРОГ РСФСР

Государственный дорожный проектно-изыскательский и научно-исследовательский институт

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОФОРМЛЕНИЮ МАТЕРИАЛОВ ИНЖЕНЕРНО-ГИДРОЛОГИЧЕСКИХ ОБОСНОВАНИЙ И РАСЧЕТОВ МОСТОВЫХ ПЕРЕХОДОВ

26 августа 1981 г.

ПРЕДИСЛОВИЕ

Цель данной работы — унифицировать требования к характеру, объему и оформлению гидролого-гидравлической части проектов мостовых переходов, разрабатываемых в Гипродорнии и его филиалах.

«Методические рекомендации» предназначены для проектирования переходов с большими и средними мостами. Они содержат схему технического задания на производство изыскания, перечень и объем полевых материалов, предъявляемых изыскательской партией, и состав тома инженерно-гидрологических условий и расчетов мостовых переходов на стадии технического проекта.

Рекомендации составлены канд. техн. наук Г.С. Пичуговым, инж. О.В. Скворцовым (Гипродорнии) и канд. техн. наук Б.Ф. Перевозниковым (Союздорпроект).

При разработке «Методических рекомендаций» использован опыт проектирования мостовых переходов институтами Гипротрансмост, Союздорпроект и Гипродорнии.

канд. техн. наук Е. К. Купцов

1. ОСНОВНЫЕ ПОЛОЖЕНИЯ

Инженерно-гидрологические обоснования и расчеты — основа для принятия технических решений и назначения генеральных размеров сооружений мостовых переходов. Такие обоснования и расчеты выполняют по данным инженерных изысканий.

Состав изысканий и расчетов мостовых переходов в зависимости от стадии проектирования и сложности объекта рекомендуют определять в соответствии с «Руководством по составу инженерно-гидрометеорологических изысканий и расчетов при проектировании водопропускных сооружений автомобильных дорог» (Гипродорнии, 1979).

Инженерные изыскания мостовых переходов заключаются в проведении геодезических, геологических и гидрометеорологических полевых работ и в камеральной обработке полученных данных.

Полевые инженерно-гидрометеорологические работы мостовых переходов включают морфометрические и гидрометрические работы. Как правило, полевые гидрометеорологические работы выполняют одновременно с полевыми работами всего комплекса инженерных изысканий на данном объекте. При проектировании больших мостовых переходов и особенно переходов через неизученные водотоки необходимо включать проведение гидрометрических работ в паводковый период с измерением уровней и расходов воды.

Когда же кратковременные гидрометеорологические изыскания не раскрывают режим и динамику физических процессов, то рекомендуют стационарные наблюдения, количество и продолжительность циклов которых устанавливают по необходимости получения достаточных данных для определенной стадии проектирования. Стационарные наблюдения, начатые при изысканиях для технического проекта, в случае необходимости можно продолжить и в период изысканий для рабочих чертежей.

При проектировании особо сложных мостовых переходов рекомендуют проводить лабораторное моделирование переходов на воздушно-напорных установках и гидравлических русловых площадках.

Раздел технического (техно-рабочего) проекта «Инженерно-гидрологические условия и расчеты мостового перехода» для больших переходов рекомендуют оформлять отдельным томом, являющимся приложением к тому «Мост» или «Искусственные сооружения». Для средних и несложных переходов содержание указанного раздела рекомендуют излагать в составе основного тома, при этом допускается уменьшение числа глав за счет их обобщения при условии освещения всех вопросов, представленных в разделе 4 настоящих рекомендаций.

В основе расчетов независимо от стадии проектирования и сложности объекта должны лежать те же принципы, что и для стадии технического проекта.

Метода расчетов, указанных в разделе 4, является основными. Дополнительно могут быть использованы и другие методы, но принятые по ним результаты должны иметь специальные обоснования.

В соответствии с постановлением ЦК КПСС и СМ СССР № 312 от 30.03.1981 г. «О мерах по дальнейшему улучшению проектно-сметного дела» намечен переход на проектирование в одну и две стадии, что требует перераспределения выполняемых работ между стадиями при сохранении их общего объема.

Для сокращения объема представляемых материалов расчеты мостовых переходов рекомендуют выполнять в табличной форме.

2. СХЕМА ЗАДАНИЯ НА ПРОВЕДЕНИЕ ТЕХНИЧЕСКИХ ИЗЫСКАНИЙ МОСТОВОГО ПЕРЕХОДА

Отделу ____________________________________________________________ на проведение

технических изысканий мостового перехода на стадии технического (техно-рабочего) проекта

Основание для изысканий — тематический план проектно-изыскательских работ на 1981 г. и задание заказчика № _____, утвержденное заместителем министра автомобильных дорог РСФСР.

Заказчик объекта — Н-ское областное управление строительства и эксплуатации автомобильных дорог.

1. Начало трассы — у пос. К.

2. Конец трассы — на южной окраине г. Н.

3. Протяженность мостового перехода — км.

4. Ориентировочная длина моста — м.

5. Техническая категория — _____.

6. Класс реки по НСП 103-52 _____.

При проведении изысканий необходимо выполнить следующие работы:

1. Провести в полном объеме в соответствии с действующими нормативными документами наставлениями и инструкциями инженерно-геодезические и инженерно-гидрометеорологические изыскания мостового перехода. Трассу перехода проработать в одном или нескольких вариантах в соответствии с актом выбора проложения вариантов трассы от________________ и решением облисполкома от ___________________.

2. Произвести съемку детального плана перехода в масштабе 1:1000 с сечением рельефа горизонталями через 1,0 м.

Ширину полосы съемки принять:

вверх по течению — 150 м;

вниз по течению — 100 м.

В районе главного русла ширина полосы увеличивается вверх по течению на 1 км, вниз — на 0,5 км. В местах пересечения староречий и проток ширина полосы съемки увеличивается до 250 м в каждую сторону от трассы.

Произвести промеры глубин главного русла в створах переходов по вариантам №№ _____, а также по намеченным морфостворам. Промерные вертикали назначать через 10 м.

Кроме этого, для изучения рельефа речного дна провести промеры глубин по четырем-пяти поперечным створам вверх от оси перехода и по трем-четырем поперечным створам вниз по течению. Поперечные створы разбить через 100 м.

Провести промеры глубин пересекаемых пойменных озер, болот и староречий. Промерами охватить участки местности вверх от оси перехода на 200 м, вниз — на 100 — 150 м. Промерные вертикали назначить через 5 м, поперечники разбить через 50 м.

В пределах съемки русла и прирусловой полосы детально описать рельеф дна русла.

Составить ситуационный план мостового перехода в масштабе 1:25000 в границах: вверх по течении от створа моста по вариантам №№ _____ на 1,5 — 2,0 ширины разлива при РУВВ, вниз по течению — на 1,0 — 1,5 ширины разлива. Ширина плана должна перекрывать ширину разлива при РУВВ на 200 — 300 м с каждого берега. Границы плана уточнить на месте с таким расчетом, чтобы было обеспечено надлежащее освещение условий протекания потока в районе перехода, а также возможности нанесения на него всех вариантов трассы перехода.

Трассу перехода по вариантам №№ _____ и оси мостов закрепить на местности в соответствии с указаниями СНиП III -40-78 и СНиП III -43-75.

Нивелировку трассы выполнить от марок и реперов государственной триангуляции в балтийской системе высот.

3. Выполнить съемки в масштабе 1:500 с сечением рельефа через 0,5 м отдельных сложных мест:

сосредоточенные резервы грунта;

места предполагаемого устройства регуляционных сооружений;

пересечение глубоких оврагов;

участки, где будет осуществляться проектирование быстротоков, водоотводных и нагорных канав:

участки для размещения строительных площадок и баз строительства;

площадки для размещения комплекса ВОХР.

Количество резервов грунта и места их расположения определить по результатам их разведки и согласования.

Места размещения строительных площадок и площадки для комплекса ВОХР принять в соответствии с актом выбора трассы.

По вариантам №№ _____ трассы перехода зафиксировать все пересекаемые или параллельно расположенные в непосредственной близости от трассы подземные, наземные, воздушные и подводные коммуникации.

Выявить владельцев коммуникаций, снять планы пересечений сделать эскизы опор, определить высоту подвески и провисания проводов, количество, диаметр, материал проводов (кабелей), назначение коммуникаций.

Получить от заказчика технические условия на переустройство коммуникаций и подсоединение к источникам электроснабжения (водоснабжения, теплоснабжения).

Снять места устройства силовых подстанций подключения к линиям ЛЭП, трассы ЛЭП (теплотрассы, трассы водопроводов) в соответствии с полученными техническими условиями.

4. Соблюдать следующие особые требования:

4.1. При выполнении работ максимально использовать материалы ранее проведенных в данном районе инженерных изысканий, официальные данные УГМС, а также материалы предпроектных разработок.

4.2. Программу изысканий до начала полевых работ согласовать с генпроектировщиком.

4.3. В процессе изысканий выполнить полный комплекс согласований в соответствии с [1] .

4.4. Получить технические условия на рекультивацию временно занимаемых земель и уточнить источники получения, стоимость саженцев и дальность их транспортировки.

4.5. Уточнить количество сносимых и переносимых строений и получить от заказчика условия их переноса и акты оценочной комиссии.

4.6. При определении площади временно отводимых земель учесть особенности производства работ в пойме реки методом гидромеханизации, согласовав дополнительный отвод земель под водоотводные канавы, станции перекачки и водоотстойники по специальным требованиям рыбоохраны.

4.7. Составить схематический план подъездных путей к станциям разгрузки и месторождениям стройматериалов с указанием технических параметров существующих дорог и грузоподъемности искусственных сооружений.

4.8. Для определения уклона реки произвести нивелировку одновременно забитых урезных кольев на участке реки в пределах ситуационного плана при 3-х горизонтах воды :

в начале подъема весеннего уровня;

на пике паводка;

4.9. Организовать проведение гидрометрических работ по вариантам створов №№ _____ с измерением скоростей течения и расходов при различных уровнях воды, включая по возможности пик паводка.

4.10. В период половодья организовать наблюдения на временных водомерных постах, установленных в створах вариантов №№ _____ и на берегу р._______

4.11. Организовать наблюдения за траекторией и скоростью движения льдин, а также определить направление струй и поверхностных скоростей в районе каждого из вариантов створа.

4.12. Произвести полную камеральную обработку материалов проведенных изысканий. В результате гидролого-гидравлических расчетов вычислить и построить Q = f ( H ); V ср = f ( H ); i = f ( H ); m = f ( H ).

Произвести обработку ряда методом математической статистики, определив расчетные расходы с вероятностью превышения 1:10; 1:50; 1:100; 1:300. Определить соответствующие расходам уровни. Вычислить основные характеристики С S , и С V . Расчетные расходы и уровни перенести на створ перехода и построить кривые вероятности превышения максимальных расходов и уровней.

Определить максимальные расчетные расходы для реки _______ в створе перехода.

При отсутствии данных многолетних постов и створов построить кривую Q = f ( H ) на расчетном морфостворе морфометрическим методом, а расходы с заданной вероятностью превыше ния определить косвенными методами по средней отметке поймы (метод Е. В. Болдокова), по УВВ с известной вероятностью превышения, по формуле СН 435-72 и указаниям Союздорпроекта 1973 г.

Произвести расчет отверстий мостов по вариантам № и № ____ через р.________________ и р. ____________________.

4.13. Полевые материалы, собранные в процессе изысканий, должны быть камерально обработаны к моменту вызова комиссии для приемки трассы и полевых работ.

4.14. Все ведомости и текстовые материалы представить в одном экземпляре в рукописном виде, все графические материалы представить на синьках в 6 экземплярах.

Сроки выполнения работ — квартал 198___ г.

1. Схема вариантов трассы.

2. Акт выбора проложения вариантов трассы.

3. Предпроектные разработки по строительству мостового перехода через р. ___________ и а/д ___________, выполненные ____________ филиалом Гипродорнии в 198___г.

Главный инженер проекта

Главный специалист технического отдела

3. ПЕРЕЧЕНЬ И ОБЪЕМ ПОЛЕВЫХ МАТЕРИАЛОВ, ОБЯЗАТЕЛЬНЫХ К ПРЕДСТАВЛЕНИЮ ИЗЫСКАТЕЛЬСКОЙ ПАРТИЕЙ ПО ОКОНЧАНИИ ПОЛЕВЫХ РАБОТ НА ПОДРОБНЫХ ИЗЫСКАНИЯХ МОСТОВОГО ПЕРЕХОДА

% выполнения в поле

Читать еще:  Отделка балконов откосы своими руками

% выполнения в проектной организации после возвращения с полевых работ

Топографическая карта с нанесенными вариантами трассы мостового перехода, с разбивкой километража, подъездами, карьерами стройматериалов, резервами для отсыпки насыпи и для гидромеханизации

Полевые пояснительные записки

Подробная полевая пояснительная записка начальника партии

Пояснительная записка по произведенным инженерно-геологическим обследованиям, поискам и разведке строительных материалов

ПРЕДИСЛОВИЕ

Настоящие Методические рекомендации разработаны в развитие положений «Рекомендаций по проектированию и сооружению земляного полотна на прижимных участках рек», введенных в действие приказом Минтрансстроя Л-1738, о гибких железобетонных покрытиях для защиты откосов транспортных сооружений и склонов берегов рек от действия водного потока.

В данной работе приведены технические характеристики гибких железобетонных покрытий различных типов, условия и области их применения, рассмотрены вопросы проектирования покрытий с указанием необходимых расчетных формул, даны рекомендации по изготовлению элементов покрытий и производству монтажных работ на объекте строительства.

Методические рекомендации разработаны на основании теоретических, лабораторных и технологических исследований, а также опыта проектирования защитных конструкций институтами ЦНИИС, Гипротрансмост, Сибгипротранс, Сибгипроречтранс Минречфлота РСФСР, ЧерноморНИИпроект Минморфлота СССР, Гидропроект Минэнерго СССР и строительства объектов трестами Тю мен ьстройпуть, Дондорстрой, Куйбышевдорстрой, Запсибгидрострой, Тындатрансстрой, Мостострой 8, Черноморгидрострой, Запорождорстрой Миндорстроя УССР и Мостострой КазССР.

Работа выполнена в соответствии с программой решения научно-технических проблем 0.85.01.Н4а и 0.54.01.Н13, утвержденных постановлением ГКНТ при Совете Министров СССР.

Методические рекомендации разработаны в лаборатории постройки речных сооружений ЦНИИСа инж. Юдиным Л.Н., кандидатами техн. наук Высоцким А.Ф., Плакидой М.Э. и инж. Лагутиной Т.А.

Замечания и предложения просьба направлять по адресу: 129320, Москва, ул. Кольская, д. 1. Всесоюзный ордена Октябрьской Революции научно-исследовательский институт транспортного строительства.

Зав. отделением транспортных гидротехнических сооружений Кузнецов А.И.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1. 1. Г ибкие покрытия откосов состоят из отдельных жестких железобетонных элементов, соединенных между собой пластическими связями, вследствие чего в одних и тех же условиях эксплуатации требуется меньшая масса покрытий по сравнению с отдельно лежащими несвязанными элементами и допустимы ограниченные деформации грунта откосов.

Гибкие плиты и блоки решеток, из которых монтируется покрытие, практически не испытывают изгибающих моментов. Их можно делать крупногабаритными и тонкими, что имеет большое экономическое значение при индустриальном изготовлении сборных элементов и механизированном монтаже покрытия на объекте строительства.

1.2 . В Методических рекомендациях рассматриваются вопросы проектирования и строительства гибких железобетонных покрытий при защите от размыва течением или от повреждений волнами грунтовых откосов и подошв насыпей подходов к мостам на железных и автомобильных дорогах всех категорий, конусов у мостов, надводных и подводных склонов и подошв склонов берегов в случае расположения земляного полотна дорог вдоль рек, при защите от размыва течением оснований регуляционных сооружений на мостовых переходах, а также при защите от размыва дна у причалов потоком, создаваемым движителями судов. Методические рекомендации могут быть использованы также при проектировании и строительстве защитных одежд берегов небольших внутренних водоемов или водохранилищ в их выклинивающихся частях.

1.3 . Методические реком ендации не касаются вопросов проектирования и строительства покрытий при защите откосов судоходных, водопроводных, ирригационных каналов и водоотводных канав.

1.4 . Вопросы во здействия на гибкие покрытия судовых волн в настоящей работе не рассматриваются.

1.5 . Методические рекомендации применимы при обычно выполняемых двух стадиях проектирования (технический проект, рабочие чертежи), а также, в случае необходимости, при составлении технико-экономического обоснования.

1.6. Предусматр ивается, что при проектировании и строительстве гибких покрытий должны учитываться также указания действующих нормативов и рекомендаций, приведенных в списке литературы.

2. УСЛОВИЯ ПРИМЕНЕНИЯ ГИБКИХ ЖЕЛЕЗОБЕТОННЫХ ПОКРЫТИЙ

2.1 . Для установления возможности применения гибких железобетонных покрытий должны быть использованы материалы изысканий и предварительные проектные соображения.

2.2 . Возможность применения гибких покрытий определяется следующими условиями:

средина расчетная скорость течения потока не должна превосходить 6 м/с;

высота ветровых волн, воздействующих на защищаемый откос, не должна превышать 0,80 — 1,00 м (в зависимости от крутизны откоса);

грунт тела насыпи, откосы которой защищаются, а также его плотность отвечают требованиям, предъявляемым СН 449-72 [1];

защищаемый откос не подвержен воздействиям льда толщиной более 1 м;

крутизна защищаемого откоса не превосходит 1:2;

температура воздуха в районе расположения защищаемых объектов не ниже минус 60 °С;

глубина воронок, образующихся при размыве оснований земляных сооружений, не превышает 4 м;

выбор покрытия обоснован технико -экономическими расчетами.

3. ИСХОДНЫЕ ДАННЫЕ ПРИ ПРОЕКТИРОВАНИИ

Топографические данные

3.1 . Для опреде ления расчетных элементов ветровых волн, воздействующих как на верховую, так и низовую стороны пойменных подтопляемых насыпей подходов к мостам, необходимо знать возможные длины разгона волн при различных направлениях ветра, а также глубины воды во время паводков по волноопасным направлениям. Исходными материалами для этого могут служить карты в масштабе 1:10000 — 1:100000 района расположения мостового перехода, а также планы в горизонталях, нанесенных не реже чем через 1 м для равнинных и 2 м для предгорных и горных условий.

3. 2. Зн ачения скоростей течения паводковых вод вдоль пойменных насыпей, воздействующих на их откосы и подошвы, могут быть установлены при наличии детального плана в горизонталях в масштабах 1:1000 при площади съемки до 50 га и 1:2000 при площади съемки свыше 50 га района расположения мостового перехода. При этом по длине должно быть полностью охвачено расположение пойменных насыпей подходов к мостам и регуляционных сооружений, не менее чем по 200 м в каждую сторону от паводочного уреза воды на берегах реки в створе мостового перехода, а по ширине — расстояние между границами разлива наибольшего паводка. На плане должно быть показано расположение все х сооруж ений мостового перехода и русла реки с направлением течения.

3.3 . Пр и проектировании покрытий для защиты от размыва течением откосов насыпей на прижимных участках и в излучинах рек, вдоль которых расположено полотно дороги, необходимо иметь план в горизонталях в масштабе 1:500 — 1:1000, на котором должны быть показаны русло реки на протяжении всего защищаемого участка и всей излучины, а также полотно дороги.

Помимо этого необходимо иметь профили поперечного сечения земляного полотна дороги, склонов берега и русла реки на всем протяжении защищаемого участка не реже чем через 50 м.

3.4 . Для про ектирования расположения в плане одежды, защищающей от размыва основания отдельных регуляционных сооружений или их частей на мостовых переходах, требуется дополнительный план в горизонталях в зависимости от размеров защищаемых объектов, охватывающий со всех омываемых потоком сторон сооружения полосу шириной, равной (считая от бровки сооружения) десяти глубинам воды в подошве откосов при расчетном паводке.

3.5 . Пр и проектировании у причалов карт покрытия, защищающих грунт от размыва движителями судов, необходим план подводного склона реки в масштабе 1:200 — 1:500 в горизонталях через 1 м с охватом полосы шириной (считая от кордона причала), равной 30 м, а для проектирования расположения штабелей конструкций — такой же план берега реки. По длине планом должна быть охвачена вся причальная линия, и на нем показаны причалы.

Инженерно-геологические данные

3.6 . Для проектирования защитных одежд откосов насыпей сооружений и склонов берегов рек, а также для определения глубины воронок размыва должны быть известны инженерно-геологическая характеристика и гранулометрический состав грунтов в защищаемых от размыва сооружениях, берегах, основаниях и подошвах сооружений, а в случаях связных грунтов — расчетное сцепление, устанавливаемое испытаниями. Анализ грунтов производится согласно ГОСТ 12536-79 [ 2 ].

3.7 . При про ектировании защитных одежд берегов рек требуется, кроме данных, указанных в п. 3.8 , г идрогеологическая характеристика берегов.

Гидрологические и гидравлические данные

3.8 . Во всех случа ях применения гибких железобетонных покрытий требуются данные о характере (дождевые, от таяния снегов), о времени наступления и продолжительности паводков в течение года, а также сведения об отметках наибольшего, расчетного, среднего и низкого меженного уровней воды в месте строительства объекта.

3.9 . Для опред еления скорости потока вдоль пойменных насыпей подходов к мосту, воздействующего на откосы, и глубины возможного размыва поймы у подошвы откосов обходимо знать: длину отверстия моста; расчетный и наибольший расход всего потока, проходящего через отверстие моста; расходы воды, проходящей в русловой части отверстия моста, при отсутствии стеснения через часть живого сечения, перекрываемую отверстием моста, и в нестесненных условиях по каждой из пойм; расчетную ширину разлива паводочной воды; продольный уклон нестесненного потока.

3 .10. При проектировании защиты откосов насыпей на прижимных участках и склонов берегов рек в излучинах, а также при проектировании защиты от размыва их подошв должна быть известна средняя скорость на вертикали в подошве склона вогнутого берега при заполнении русла в бровках излучины.

3 .11. Для расчета местного размыва у головы односторонней струенаправляющей дамбы требуются следующие данные: полный расчетный расход потока; расход воды, проходящей по ширине отверстия моста в бытовых услови ях; глубина воды до размыва у головной части дамбы; наибольшее значение средней скорости под мостом, определяемое при расчете общего размыва; значение средней скорости нестесненного потока в бытовых условиях.

3.12 . Для расчета м естного размыва при двухсторонних струенаправляющих дамбах нужны такие данные: глубина воды до размыва у головной части дамбы; расход на нест есненной части потока, состоящей из прилегающих к данной дамбе поймы и части русла до линии наибольших глубин; расход на части отверстия, прилегающей к данной дамбе; наибольшее значение средней скорости на части отверстия моста, прилегающей к данной дамбе, считая от вертикали на наибольшей глубине; средняя скорость в бытовых условиях на нестесненной части потока, состоящей из прилегающих к данной дамбе поймы и части русла до вертикали на наибольшей глубине.

3.13 . Дл я расчета глубины размыва у головной части траверса необходимо знать глубину воды в голове траверса до размыва и среднюю скорость течения набегающего потока на вертикали у головной части траверса.

3 .14. При проектировании защиты дна у причалов от размыва движителями судов должен быть известен наиболее низкий уровень воды у причалов в течение периода судоходства.

Метеорологические данные

3.15 . Во всех случаях пр именения гибких покрытий, за исключением тех, когда покрытия находятся всегда под водой, требуются следующие сведения: характеристика температурного режима воздуха; максимальная и минимальная годовые температуры; продолжительность жаркого и холодного периодов года.

3.16 . При проектиров ании защитных одежд откосов и их подошв от воздействия ветровых волн и для определения расчетных элементов последних необходимо иметь данные береговых или материковых метеостанций о наблюденных максимальных скоростях ветра по всем восьми румбам (С, СВ, В, ЮВ, Ю, ЮЗ, З, СЗ) по годам за многолетний (не менее 25 лет [ 3 ]) период наблюдений и по месяцам, в течение которых возможны паводки с глубинами на поймах, обеспечи вающим и волнообразование.

Конструктивные данные

3 .17. Для проектирования защитных покрытий откосов грунтовых сооружений мостовых переходов необходимо знать поперечные сечения этих сооружений и крутизну откосов, а для проектирования траверсов, кроме того, их длину и угол косины их продольной оси к направлению течения.

3.1 8. При про ектировании защитных покрытий дна у причалов требуются следующие данные: поперечные сечения причалов, типы судов, которые будут пришвартовываться к причалам, количество и диаметр винтов, мощность движителей, наименьшая возможная глубина воды, считая от оси винта до дна, наибольшее возможное число оборотов винта при швартовке и отчаливании судов, ширина судов.

4. РЕКОМЕНДУЕМЫЕ КОНСТРУКЦИИ ПОКРЫТИЙ, ИХ НАЗНАЧЕНИЕ И КОМПОНОВКА

Гибкие покрытия

4 .1. Гибкие покрытия рассматриваются как волногасящие и противоразмывные элементы сооружений, которые по своей значимости могут быть приравнены к гидротехническим речным сооружениям IV класса.

4.2 . Гибкие покрытия подра зделяются на сплошные плиты и решетчатые с ячейками, образованными взаимно пересекающимися гирляндами. Конструкция состоит из отдельных жестких железобетонных элементов, объединенных посредством пластических связей из арматурной стали в полимерной оболочке * . Между отдельными элементами образуются линейные шарниры, благодаря чему конструкция способна вписываться в криволинейные поверхности, которые могут образовываться на технологических операциях и в период эксплуатации покрытий [ 4 ].

* Изобретение. Свидетельство № 251463. Авторы: Юдин Л.Н., Петрашень И.Р., Элексон Г.З.

4 .3. В пластических связях сталь связи на участке длиной 115 мм (рис. 1 ) находится в эластичной оболочке толщиной 2 мм из термо- и фотостабилизированного полиэтилена высокой плотности, наносимого термопрессованием. Эта оболочка позволяет стали расширять зону пластических деформаций и предохраняет арматуру от коррозии. У полиэтиленовой оболочки на концах выполнены специальные запорные шайбы, исключающие возможность прохода влаги по контуру полиэтилен — бетон внутрь бетона при изменении температуры в период эксплуатации.

Рис . 1 . Полиэт иленовая оболочка стержня арматуры

4.4 . Гибкие покрытия набир аются из отдельных сборных элементов (гибких плит и блоков) заводского изготовления. Типоразмеры плит и блоков, их масса, расход основных материалов на 1 м 2 покрытия и допустимые значения воздействующих на них факторов приведены в табл. 1 .

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector