Nmexpertiza.ru

НМ Экспертиза
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Угол откоса равен углу внутреннего трения

УСТРОЙСТВО ИЗМЕРЕНИЯ УГЛА ЕСТЕСТВЕННОГО ОТКОСА СЫПУЧЕГО МАТЕРИАЛА

Полезная модель предназначена для измерения угла естественного откоса сыпучего материала в потоке. Указанный технический результат достигается тем, что в предлагаемом измерительном устройстве, состоящем из крутонаклонного ленточного конвейера с реверсивным электродвигателем, управляемым по сигналам датчиков верхнего и нижнего потоков, на верхнем конце рамы конвейера, неподвижно закреплен стрелочный указатель угла наклона, сопряженный со шкалой.

При работе измерительного устройства рабочая ветвь конвейера движется вверх, в результате чего сыпучий материал разделятся на два потока. Отсчет угла естественного откоса осуществляется по шкале в равновесном состоянии системы, когда угол наклона конвейера равен углу естественного откоса сыпучего материала.

Принудительное удаление прилипшего к ленте материала осуществляется подпружиненным скребком, закрепленным на верхнем барабане конвейера. Для уменьшения погрешности измерений на рабочей поверхности ленты конвейера нанесены рифы в виде поперечных параллельных полос.

1. Устройство измерения угла естественного откоса сыпучего материала, характеризующееся тем, что оно содержит крутонаклонный ленточный конвейер, снабженный реверсивным электродвигателем, установленным с возможностью изменения угла наклона конвейера по сигналам от датчиков верхнего и нижнего потоков, и стрелочным указателем, закрепленным на верхнем конце рамы конвейера и сопряженным с неподвижной шкалой. 2. Устройство измерения угла естественного откоса сыпучего материала по п.1, отличающееся тем, что на оси верхнего барабана конвейера с возможностью поворота установлен скребок, снабженный прижимным упругим элементом. 3. Устройство измерения угла естественного откоса сыпучего материала по п.1, отличающееся тем, что на рабочую поверхность ленты конвейера нанесены рифы в виде поперечных параллельных полос с глубиной рифов 2…3 и расстояниями между ними 3…4 средних диаметра частиц сыпучего материала.

1. Область техники

Предлагаемое устройство относится к технике измерения параметров полидисперсных сыпучих материалов, таких как песок, цемент, поваренная соль и др., в процессах их переработки. 2. Уровень техники

Анализ патентов, стандартов, научной литературы и других информационных источников показывает, что известные устройства измерения угла естественного откоса, или, так называемого, угла внутреннего трения, предназначены для измерений этого параметра в стационарных лабораторных условиях путем испытаний отобранных проб.

Известно устройство измерения угла естественного откоса глинозема по ГОСТ 27802-93 [1], которое состоит из воронки, консольной стойки, плиты и цилиндра. Значение угла откоса α определяется по формуле:

где D — средняя арифметическая длина четырех пересекающихся линий, мм.

Известно так же устройство для реализации способа определения угла естественного откоса порошкообразного материала по патенту РФ №2002129550 [2], в состав которого входят тарель с вертикальной стенкой, образующей подложку из испытуемого материала, и выпускное отверстие, расположенное на расстоянии h от подложки. В этом устойстве диаметр тарели d определяют из выражения: d=7,5h.

В результате информационного поиска устройств непрерывного автоматического измерения угла естественного откоса дижущегося сыпучего материала не обнаружено, а измерение этого угла в стационарных условиях с использованием описанных и других лабораторных устройств предполагает периодический отбор проб и выполнение ручных операций в процессе измерений.

3. Сущность полезной модели

Технической задачей является разработка автоматического устройства измерения угла естественного откоса полидисперсного сыпучего материала в потоке.

Необходимо отметить, что сыпучесть материала, характеризуемая углом естественного откоса, является важным технологическим параметром, определяющим стабильную работу всего технологического оборудования и качество готового продукта.

Поставленная задача решается тем, что в предлагаемой полезной модели, содержащей выпускное устройство в виде расходного бункера испытуемого материала и подложки в виде рабочей ветви ленты крутонаклонного конвейера, закрепленного с возможностью поворота относительно оси приводного барабана, дополнительно установлены: механизм для изменения угла наклона транспортера, датчики контроля верхнего и нижнего потоков сыпучего материала, стрелочный указатель со шкалой и два приемных бункера под верхним и нижним барабанами конвейера.

Основными отличительными признаками предлагаемого устройства контроля угла естественного откоса от известных устройств является наличие крутонаклонного ленточного конвейера, установленного с возможностью изменения угла наклона при помощи реверсивного электропривода и датчиков контроля верхнего и нижнего потоков сыпучего материала.

Благодаря наличию этих признаков дозированный отбираемый из технологической линии сыпучий материал через расходный бункер попадает на движущуюся вверх ленту конвейера и разделяется на два потока. Так как рабочая ветвь ленты движется вверх, то в зависимости от соотношения сил трения и сил тяжести часть потока с малым углом откоса будет перемещаться по ленте вниз, а другая его часть с большим углом откоса поднимется вверх. Если эти потоки не равны между собой, то сработает один из датчиков контроля потока и по его сигналу реверсивный электропривод при помощи передаточного механизма изменит угол наклона конвейера так, что больший из потоков уменьшится. Отсчет значения угла откоса производится по шкале в равновесном состоянии устройства измерения, т.е. когда верхний и нижний потоки равны и угол наклона конвейера равен углу естественного откоса сыпучего материала. При необходимости более точных измерений возможна градуировка предлагаемого устройства с использованием лабораторного средства измерений, например, по ГОСТ 27802-93, как образцового.

Читать еще:  Акриловые откосы для откосов

Для очистки нижней ветви ленты конвейера от налипшего комкуемого материала на верхнем барабане установлен подпружиненный скребок. Если учесть, что для измерений отбирается малая часть основного технологического потока (2-3%), то испытуемый сыпучий материал из верхнего и нижнего накопительных бункеров может объединяться в один поток и возвращаться в технологическую линию транспортирующим устройством малой производительности, например, наклонным скребковым транспортером.

В общем случае направление движения испытуемого материала по транспортерной ленте зависит не только от силы внутреннего трения, но и от силы трения материала о поверхность транспортерной ленты, что вызывает существенную дополнительную погрешность результата измерений. Для уменьшения этой погрешности на рабочей поверхности ленты конвейера нанесены рифы в виде поперечных параллельных полос, благодаря которым на поверхности ленты образуется подложка из испытуемого сыпучего материала.

Таким образом, предлагаемое устройство обеспечивает в автоматическом режиме измерение угла естественного откоса сыпучего материала в технологическом потоке прямым способом во всем диапазоне и с достаточной точностью. Измерение угла естественного откоса в динамическом режиме обеспечивает соблюдение принципа инверсии в технологии переработки сыпучих материалов и позволяет использовать это устройство в системах автоматического управления, что, несомненно, повысит качество готового продукта.

В целом, совокупность признаков предлагаемой полезной модели необходима и достаточна для решения поставленной задачи и в полном объеме ранее нигде не использовалась для решения поставленной задачи или других эквивалентных задач. Следовательно, предлагаемое техническое решение отвечает критериям существенной новизны и полезности.

Схема и основные элементы конструкции устройства измерения угла естественного откоса сыпучего материала иллюстрируются чертежами на фиг.1,2.

Фиг.1 — устройство измерения угла естественного откоса сыпучего материала;

Фиг.2 — верхний барабан конвейера. 4. Примеры конкретного выполнения

Пример 1 конкретного выполнения

В соответствии с чертежом (фиг.1) предлагаемое устройство состоит из крутонаклонного ленточного конвейера 1, снабженного верхним 3 и нижним 12 датчиками потока сыпучего материала. Под приводным и ведомым барабанами конвейера и над серединой рабочей ветви ленты 14 конвейера неподвижно установлены: расходный бункер 2, накопительный бункер 7 материала с большим углом откоса и накопительный бункер 11 материала с малым углом откоса. Рама конвейера 1 через передаточный механизм 8 кинематически связана с реверсивным электроприводом 9, а приводной барабан сочленен с электроприводом 10. На верхнем конце рамы конвейера неподвижно закреплен стрелочный указатель 4. Шкала 5 устройства измерения установлена неподвижно так, что при изменении угла наклона конвейера стрелка 4 перемещается вдоль ее линии.

Измерение угла естественного откоса сыпучего материала предлагаемым устройством по примеру 1 осуществляется следующим образом. Малая дозируемая часть технологического потока отбирается из непрерывной технологической линии и через расходный бункер 2, самотеком поступает на ленту 14 конвейера 1, которая под углом, близким к углу естественного откоса, движется вверх. Если в сумме сила трения материала о поверхность ленты и сила внутреннего трения больше проекции силы тяжести, то материал вместе с лентой перемещается вверх. Для более сыпучего материала сила трения между частицами меньше, сформулированное условие не выполняется и материал на движущейся ленте перемещается вниз. С учетом того, что датчики 3 и 12 настроены на одинаковые значения проходящих по ленте потоков, то при нарушении их баланса срабатывает датчик увеличившегося потока и включается реверсивный электропривод 9 угла наклона конвейера. Изменение угла наклона конвейера происходит до тех пор, пока увеличившийся поток не уменьшится до заданного значения и оба потока не сбалансируются. Отсчет угла естественного откоса осуществляется по неподвижной шкале 5 при помощи стрелочного указателя 4, неподвижно закрепленного на раме конвейера. Пример 2 конкретного выполнения

В устройстве измерения угла естественного откоса сыпучего материала по примеру 2 под верхним барабаном конвейера 1 с возможностью поворота закреплен скребок 6 из эластичного материала, снабженный упругим элементом, например, пружиной 13 (фиг.2). Упругий элемент обеспечивает постоянный контакт скребка с транспортерной лентой 14, в результате чего прилипший к ленте комкуемый материал соскабливается с нее и ссыпается в накопительный бункер 7. Стрелочный указатель 4 и датчик верхнего потока 3 на фиг.2 не показаны.

Пример 3 конкретного выполнения

В устройстве измерения угла естественного откоса сыпучего материала по примеру 3 на рабочей поверхности ленты 14 конвейера 1 нанесены рифы в виде поперечных параллельных полос (фиг.2). Глубина рифов h и расстояния между полосами b определяются по следующим формулам:

где d — средний диаметр частиц сыпучего материала, мм.

Благодаря наличию рифов на рабочей поверхности ленты при ее движении образуется подложка из испытуемого материала, что практически исключает влияние силы трения материала о поверхность ленты на результат измерения и повышает его точность.

5. Промышленная применимость

Экспериментальный образец устройства измерения угла естественного откоса сыпучего материала изготовлен и испытан в экспериментально-технологической лаборатории факультета технологии и предпринимательства Томского государственного педагогического университета. Испытания, проведенные на соли поваренной пищевой сорта «Экстра», подтвердили работоспособность и перспективность заявляемой полезной модели.

Читать еще:  Крепление для откосов хаба

В 2009 году планируется совместно с Томским государственным архитектурно-строительным университетом провести испытания измерительного устройства на сыпучих строительных материалах, определить основные метрологические характеристики и изучить технико-экономические возможности его использования в технологических линиях производства кирпича и цемента.

1. Глинозем. Метод определения угла естественного откоса / ГОСТ 27802-93 (ИСО 902-76). Минск, 1993.

2. Способ определения угла естественного откоса порошкообразного материала / Патент РФ №2002129550.

Какой вид имеет закон Кулона для несвязного грунта? Что называется углом внутреннего трения? Критическая пористость песка

Страницы работы

Фрагмент текста работы

Какой вид имеет закон Кулона для несвязного грунта? Что называется углом внутреннего трения? Закон Кулона — предельное сопротивление сыпучих грунтов сдвигу есть сопротивление трению, прямо пропорциональное нормальному давлению: τi=σ·tgφ (τi– предельное сопротивление грунта сдвигу или сопротивление трению, σ – нормальное давление; tgφ – коэффициент, характеризующий трение грунта о грунт, который называют коэффициентом внутреннего трения; φ – угол внутреннего трения).

95. От чего зависит угол внутреннего трения песка? Угол внутреннего трения, обусловленный сопротивлением сыпучих грунтов сдвигу, находиться в прямой зависимости от свойства сцепления частиц грунта.

96. Что такое угол естественного откоса и совпадает ли он с углом внутреннего трения? Углом естественного откоса α называется максимальный угол, образованный поверхностью свободного откоса с горизонтом, при котором песок находиться в состоянии предельного равновесия. Зависит он от крупности окатанности частиц, плотности и влажности песка и не зависит от высоты откоса. А в случае же сухого песка угол α можно принять практически равным углу внутреннего трения φ.

97. Чем вызывается сопротивление сдвигу связного грунта? Сопротивление сдвигу грунта вызывается тем, что частицы и агрегаты частиц этих грунтов связаны между собой пластичными (водноколлоидными) и частично жесткими (цементационно-кристализационными) связями, при этом сопротивление их сдвигу будет в высокой степени зависимости от их связности — сил сцепления (величины зависящей от состава и состояния грунта, степени его уплотнённости).

98. Что такое открытая и закрытая системы испытания глинистого грунта?

При закрытой системе испытаний образцы связных грунтов должны быть испытаны при отсутствии условий выдавливания воды из пор грунта и так, чтобы во время испытаний практически не менялась их плотность-влажность , т.е. неконсолидированно-недренированно, а при открытой системе испытаний консолидировано-дренированно.

99. Какова зависимость (закон Кулона) для неконсолидированного и консолидированного испытания? Зависимость предельного сопротивления сдвигуконсолидированного грунтазаписывается ворожением: τu= cэtgφ, где c — эффективное сцепление, σэ — эффективное давление (равное полному).В условиях же неполной консолидации водонасыщенного грунта эффективное давление в скелете грунта будет меньше полного напряжения σэ = σ – σи (где σидавление воды при неполной консолидации) и в следствии чего зависимость предельного сопротивления сдвигу будет записываться как τu= c+( σ – σи) tgφ.

100. Что такое давление связности. Если прямую АВ графика сопротивления сдвигу связного грунта продлить влево до пересечения с осью абсцисс, то она отсечет на ней отрезок ре. Величину ре называют давлением связности. Таким образом давление можно связать с параметром сцепления (связности) грунта уравнением :c = pe·tgφ, откуда выражаем pe = ctgφ = c·ctgφ..

102. Для чего служит диаграмма Мора? В каких координатах она строится. Построенная в декартовой системе координат диаграмма (τ,р)мора позволяет определить графическим способом эффективное сцепление грунта с, угол внутреннего трения φ и давление связности ре , строя для этого огибающую кругов мора отсекающую в своём продолжении на оси р отрезок ре (характеризующий по величине давление связности) и на оси τ отрезок с (характеризующий эффективное сцепление грунта) под углом внутреннего трения φ.

105. Каково минимальное число опытов для определения угла внутреннего трения φ и удельного сцепления с? 6

106. Как определить нормативные и расчётные значения характеристик сопротивления грунта сдвигу? По данным частных определений какой либо характеристики физического состояния устанавливают её нормативное значение Xn:

Где n – число экспериментов по определению характеристики; Xi – частное (i-е) значение характеристики .

Характеристики X , используемые в расчётах прочности, обычно называют расчётными и определяют по формуле: Х = Хn / γg , где γg — коэффициент надёжности по грунту.

108. Какие лабораторные методы определения характеристик прочности глинистого грунта вы знаете? К этим лабораторным методам относят испытания, с условием отсутствия в них выдавливания воды из пор грунта. Так чтобы плотность-влажность грунта во время их проведения практически не менялась — неконсолидированно-недренированный условие. И наоборот — консоледированно-дренированный условие. Методами испытания сопротивления грунтов являются методы при трёхосном сжатии, прямой плоскостной срез, простое одноосное сжатие.

1109.Каким образом обычно производятся опыты в приборе прямого среза и в стабилометре? Для определения прочностных характеристик грунта в стабилометре испытывают несколько образцов-близнецов на трехосное сжатие. Цилиндрический образец грунта l, заключенный в резиновую оболочку 2, предварительно подвергают всестороннему природному сжатию с интенсивностью да, путем повышения давления в жидкости 3, заполняющей полость прибора и через поршень 5 прикладывают давление, соответствующее р3. Затем увеличивают нагрузку Р, создавая на грунт давление рх (после суммирования с р3). Под давлениями р, и ръ в образце возникают главные напряжения а, и а3. Увеличением а, можно достигнуть разрушения образца либо в виде сдвига по наклонной поверхности, либо в виде существенного расширения в стороны с уменьшением высоты. с уменьшением высоты. Зная главные напряжения в момент разрушения образца, строят круг напряжений Мора.

Читать еще:  Уголки пвх обрамления откос

(Прямой срез)Предельное сопротивле ние грунтов сдвигу при пря мом плоскостном срезе оп ределяют при испытании грунтов на односрезных при борах; при этом цилиндрический образец

грунта (после предваритель лого уплотнения или без уплотнения помещают

Вопрос 1 — Устойчивость откоса в идеально сыпучих грунтах

Откосом называют искусственно созданную поверхность, ограничивающую природный грунтовый массив, выемку или насыпь (дорожное полотно, дамбы, земляные плотины, котлованы, траншеи, канавы и т.д.).

Склоном называют откос, образованный природным путем и ограничивающий массив грунта естественного сложения.

Выбор оптимальной крутизны откосов при проектировании насыпей и выемок позволяет, с одной стороны, избежать аварии, а с другой – снизить объемы земляных работ, тем самым удешевить строительство.

Основными причинами потери устойчивости откосов и склонов являются:

— устройство недопустимого крутого откоса или подрезка склона, находящегося в состоянии, близком к предельному;

— увеличение внешней нагрузки (складирование материалов на откос или вблизи его бровки, возведение сооружений);

— изменение внутренних сил (увеличение удельного веса грунта при возрастании его влажности или, напротив, влияние взвешивающего давления воды на грунты);

— неправильное назначение расчетных характеристик прочности грунта или снижение его сопротивления сдвигу за счет повышения влажности и других причин;

— проявление гидродинамического давления, сейсмических сил, различного рода динамических воздействий (движение транспорта, забивка свай и т.п.).

Обычно все эти факторы проявляются во взаимодействии., важнейшую роль играет тщательный анализ инженерно-геологической обстановки объекта.

В проектной практике используют большое количество различных методов оценки устойчивости откосов и склонов, изложенных в работах ученых: К.Тертаги, Г. Крея, Д. Тейлора, Р. Р. Чугаева, Н.Н. Маслова, М.Н. Гольдштейна, А.Л. Можевитинова и ряда других. При этом обычно анализируются два типа задач:

1) оценка устойчивости откоса или склона заданной крутизны;

2) определение оптимальной крутизны откоса или склона при заданном нормативном коэффициенте устойчивости. Коэффициент устойчивости определяют по выражению (7.1):

k st = tg φ / tg φ’ = с / с’ , (7.1)

где φ , с — расчетные значения характеристик сопротивления сдвигу грунта, принятые в проекте по данным геотехнических испытаний;

φ’ , с’ — то же, соответствующие предельному состоянию откоса или склона.

Устойчивость откоса или склона считается обеспеченной (см. лекцию № 6),

Рисунок 23 – Схемы к расчету устойчивости откосов:

а) идеально сыпучего грунта;

б) то же, при действии фильтрационных сил;

в) идеально связного грунта.

если соблюдается условие (6.11):

где k н st — нормативный коэффициент устойчивости, определяемый по по формуле (6.10) или задаваемый в проекте. Его значение находится в пределах 1,1…1,3.

Если φ не равно 0, а с=0, грунты идеально сыпучие. Рассмотрим равновесие частицы грунта, свободно лежащей на поверхности откоса (Рисунок 23, а).

Поскольку грунт обладает только внутренним трением, устойчивость частицы обеспечена, если сдвигающая сила Т будет равна или меньше удерживающей силы трения Т ‘ . При весе частицы Р и коэффициенте внутреннего трения грунта f = tg φ, это условие примет вид (7.2):

Т = sin α ; Т ‘ = Р cos α tg φ; Т ≤ Т ‘ , (7.2)

Откуда: tg α ≤ tg φ или α ≤ φ , (7.3)

Таким образом, если угол заложения откоса равен или меньше угла внутреннего трения грунта, устойчивость откоса обеспечена.

Необходимо оценить запас устойчивости откоса при этих условиях. В предельном состоянии условие (7.3) примет вид (7.4):

то есть, предельное значение угла заложения откоса в сыпучих грунтах равно углу внутреннего трения грунта. Такое значение α часто называют углом естественного откоса. Тогда, учитывая формулу (7.1), выражение (7.4) можно записать в виде (7.5):

tg φ’ = tg φ / k st; α = arctg (tg φ / k st) , (7.5)

k st = tg φ / tg α , (7.6)

При k st ≥ k н st откос обладает необходимым запасом устойчивости.

При проектировании часто требуется определять угол заложения откоса, гарантирующий его устойчивость в соответствии с заданным нормативным коэффициентом устойчивости. В этом случае во второе уравнение формул (7.5) вместо k st нужно подставить k н st :

α = arctg (tg φ / k н st) , (7.7)

studopedia.org — Студопедия.Орг — 2014-2021 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.002 с) .

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector