Nmexpertiza.ru

НМ Экспертиза
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Устойчивость откоса это состояние

Устойчивость откоса это состояние

При определенных условиях может происходить потеря устойчивости части грунтового массива, сопровождающаяся разрушением взаимодействующих с ней сооружений. Это связано с формированием в массиве некоторых областей, где соотношение между действующими напряжениями становится таким, что прочность грунта оказывается исчерпанной.

Оценка устойчивости массива грунтов основывается на анализе напряжений, возникающих в них от собственного веса и проектируемого сооружения, и сопоставлений с предельными их значениями.

Условие предельного равновесия в точке грунтового массива, характеризуются следующими выражениями теории предельного равновесия:

— для песка (4.1)

— для глинистого грунта (4.2)

Эти выражения позволяют дать оценку напряженного состояния грунта, т.е. установить, находится ли грунт в допредельном или предельном состоянии, а, следовательно, на сколько устойчив массив.

Предельное состояние грунта соответствует точке в рис. 4.1а, где осадка S уходит в бесконечность, т.о. теория предельного равновесия исследует только напряженное состояние массива грунтов и не дает возможности определить развивающиеся в нем деформации.

4.1. Критические нагрузки на грунты основания. Фазы напряженного состояния грунтовых оснований

Рассмотрим график зависимости на рис. 4.1, а.

Для связного грунта начальный участок графика Оа будет почти горизонтальным, протяженность этого участка определится величиной структурной прочности грунт, а деформация имеет упругий характер.

При увеличении давления (участок аб) осадка возрастает, развивается процесс уплотнения за счёт уменьшения пористости грунта. Зависимость близка к линейной, осадки стремятся к постоянной величине (4.1, б). Ни в одной точке основания не формируется предельное состояние. Наибольшее напряжение, ограничивающее этот участок, называется начальной критической нагрузкой pнач кр., а изменение нагрузки от 0 до pнач кр. характеризует фазу уплотнения грунта.

При изменении давления под подошвой фундамента от 0 до pнач кр. ни в одной точке основания не возникает предельное состояние, т.е. происходит только уплотнение грунта, что абсолютно безопасно для основания.

При дальнейшем увеличении нагрузки (участок бв рис.4.1, а) в точках, расположенных под краями фундамента, касательные напряжения по некоторым площадкам становятся равными их предельным значениям. По мере возрастания нагрузки эти точки объединяются в зоны, размеры которых увеличиваются. Возникают сдвиговые деформации, имеющие пластический характер. График зависимости всё больше отклоняется от линейного. Участок бв называют фазой сдвигов. Концу этой фазы соответствует ри, называемая предельной критической нагрузкой, при которой в основании образуются замкнутые области предельного равновесия, и происходит потеря устойчивости грунтов, т.е. полное исчерпание несущей способности.

В зависимости от глубины заложения подошвы фундамента d/b очертания областей предельного равновесия имеют различный характер (рис. 4.2).

Нагрузки, соответствующие pнач кр. и ри называют критическими нагрузками, их определяют методами теории предельного равновесия.

4.1.1. Начальная критическая нагрузка

Начальная критическая нагрузка соответствует случаю, когда в основании под подошвой фундамента в единственной точке под гранью фундамента возникает предельное состояние.

Выберем в основании точку М (рис. 4.3) и определим такое контактное напряжение р, при котором в этой точке возникнет предельное напряженное состояние.

Лекция 6. Устойчивость грунтовых откосов

Массив грунта при определенных условиях может потерять устойчивость и в результате этого перейти из состояния статического равновесия в состояние движения. Такое состояние грунтового массива называется оползнем. Принятая классификация оползней основана на схемах потери устойчивости грунтового массива. Различают следующие виды оползней: оползни вращения; оползни скольжения; оползни разжижения(рис 6.1).

Рис. 6.1. Виды оползней: а – оползень вращения; б – оползень скольжения (пристенный оползень); 1 – поверхности скольжения в теле оползня; 2 – стационарная плоскость скольжения на границе оползня с подстилающим устойчивым массивом

Для оползней вращения характерна форма потери устойчивости грунтового массива в виде движения по криволинейной поверхности с вращением. Оползни скольжения называют также пристенными оползнями, так как их движение при нарушении равновесия происходит по заранее известным плоскостям, являющимся плоскостями контакта грунтового массива с устойчивыми горными породами. Оползнями разжижения называют грязевые потоки разжиженного водой грунта по выработанным руслам рек и тельвегам, например, селевые потоки. Механика грунтов изучает первые два типа оползней. Нарушение равновесия массива грунта может происходить внезапно со сползанием значительных масс грунта. Основными причинами нарушения равновесия массива грунта является увеличение нагрузок, действующих на массив, и уменьшение внутреннего сопротивления грунтового массива. Увеличение нагрузок может происходить по следующим причинам: возведение сооружений на откосах; водонасыщение массива грунта или подвешивание капиллярной влаги при понижении уровня грунтовых вод; увеличение градиента гидравлического напора и связанных с этой величиной фильтрационных сил. Фильтрационными силами называют силы давления и трения грунтового потока по поверхности минеральных частиц грунта. Интенсивности этих сил на единицу объема грунта могут быть вычислены по формулам:

, (6.1)

где H – гидравлический напор, выраженный в пьезометрических единицах, например, в метрах водяного столба.

Уменьшение сопротивления массива грунта может происходить в результате: разрушения естественных упоров, например, в результате подмыва основания откоса; уменьшения эффективного трения при возрастании порового давления; уменьшения сил сцепления при увлажнении и набухании грунтов. Ниже приводятся инженерные решения задач, связанных с определением устойчивости свободных откосов и склонов. Откос отличают от склона большим углом наклона свободной поверхности к горизонтали. По различным литературным источникам откосом называют склон с углом наклона свободной поверхности к горизонтали более 30°. Нормативная классификация грунтовых массивов, подразделяющая их на склоны и откосы отсутствует. В связи с эти приведенное выше определение откоса является условным.

1. Устойчивость откоса из идеально сыпучего грунта. Откос из идеально сыпучего грунта имеет свободную поверхность, наклоненную к горизонтальной плоскости под углом a (рис. 6.2).

Элементарная частица грунта на свободной поверхности испытывает силу тяжести G, которую можно разложить на нормальную N и касательную T к наклонной поверхности компоненты:

Читать еще:  Отделка наружных откосов искусственным камнем

(6.2)

Элементарная частица грунта удерживается на наклонной поверхности силой трения, равной произведению нормальной компоненты силы тяжести на коэффициент трения. Обозначим коэффициент трения как тангенс угла внутреннего трения j. Тогда из уравнения равновесия проекций всех сил на наклонную плоскость получим:

;

(6.3)

Полученный результат можно обобщить в виде следующего определения: угол наклона к горизонтальной плоскости свободной поверхности откоса, сложенного идеально сыпучим грунтом, равен углу внутреннего трения этого грунта. Этот результат можно использовать в качестве теоретической основы экспериментального метода по определению угла внутреннего трения сыпучего грунта.

Сдвигающей силой является касательная составляющая силы тяжести Tсд,i = Ti. Удерживающими силами являются сила трения и сила сцепления по поверхности скольжения:

где li – длина дуги поверхности скольжения в пределах i -го объема грунта;
ci и ji – сцепление и угол внутреннего трения грунта в пределах дуги li.

Условием равновесия по поверхности скольжения АС, пересекающей откос, является равенство нулю суммы моментов сдвигающих и удерживающих сил относительно центра О круглоцилиндрической поверхности скольжения:

. (6.6)

Для анализа устойчивости грунтового массива вместо уравнения (6.6) чаще всего используют выражение для коэффициента устойчивости, равное отношению момента удерживающих сил к моменту сдвигающих сил:

(6.7)

В формулах (6.6) и (6.7) угол a отсчитывается от горизонтали и считается положительным при повороте ее на острый угол до совмещения с касательной против хода часовой стрелки. При отрицательном угле a касательная составляющая силы тяжести и соответствующий ей момент являются удерживающими, что автоматически учитывается формулами (6.6) и (6.7). Предел суммирования по i n определяет количество элементарных объемов грунта, на которые разделяется верхняя часть откоса, отделенная от остального массива поверхностью скольжения. С увеличением n увеличивается точность расчетов по формулам (6.6) и (6.7). Формулы (6.6) и (6.7) являются не конечными, а промежуточными результатами. Решение задачи состоит в отыскании минимального коэффициента устойчивости откоса h для всех возможных траекторий поверхностей скольжения. Для упрощения решения поставленной задачи существуют следующие рекомендации. Предполагается, что центры возможных круглоцилиндрических поверхностей скольжения лежат на прямой (рис. 6.4), соединяющей вершину откоса В с точкой в глубине массива, отстоящей от основания откоса (точка А) по горизонтали на 4,5 Н и от верха откоса (точка В) по глубине на 2 Н. Варьируя на указанной линии положением центров поворота Оj, строят график зависимости коэффициента устойчивости откоса hj от положения центра поворота Оj. Решением задачи (рис. 6.4) является минимальный коэффициент устойчивости откоса hj,min.

4. Расчет устойчивости пристенного оползня. Как уже отмечалось, предельное равновесие пристенного оползня реализуется по заранее известным плоскостям скольжения (рис. 6.8), каковыми являются плоскости контакта грунтового массива с коренными породами.

Решение задачи сводится к определению величины оползневого давления Еi. Массив грунта разбивается вертикальными плоскостями, перпендикулярными чертежу, на элементарные призмы с приведенным весом Gi. Под приведенным весом понимается собственный вес грунта с нагрузкой на его поверхности. В пределах элементарной призмы поверхность скольжения должна быть представлена плоскостью (без переломов и изгибов). Предполагается, что силы оползневых давленийЕi наклонены к боковым граням элементарных призм грунта под углом внутреннего трения ji. Плоскость скольжения элементарной призмы наклонена к горизонтали под углом ai. Решение задачи сводится к определению оползневого давленияЕi по известному давлениюЕi-1 и приведенному весуGi. Для этого составляется и решается уравнение предельного равновесия на площадке скольжения. Приведем силы, действующие на элементарную призму (рис. 6.8), к их проекциям на вертикальную Y и горизонтальную X оси:

(6.8)

Приведем систему сил (6.8) к их проекциям на нормаль к плоскости скольжения N и касательную T, лежащую в этой плоскости:

(6.9)

Условие предельного равновесия на площадке скольжения будет иметь вид:

;


(6.10)

Полученное решение дляЕi используется для анализа устойчивости пристенного оползня следующим образом.

Для первой призмы в верхней части оползня принимается Е = 0. Опреде­ляется по формуле (6.10) Е1. Указанная процедура продолжается до тех пор, пока не будет вычислено Еn – оползневое давление на свободной поверхности последней призмы нижней части оползня. Если Еn больше нуля, оползень счи­тается неустойчивым. Если Еn меньше нуля, устойчивость оползня обеспечена.

|следующая лекция ==>
Лекция 2. Фазы напряженно-деформированного состояния грунта. Принцип линейной деформируемости. Закон прочности Кулона – Мора. Закон ламинарной фильтрации Дарси|Лекция 7. Модели грунтового основания. Методы расчета осадок

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Устойчивость экосистем: иллюзия или реальность

Основные понятия и теории

Экосистема – это совокупность живых организмов, среды их обитания и связей между ними, посредством которой происходит обмен веществами и энергией. То есть она состоит из частей и связей между ними. Именно от них и зависит устойчивость экосистем.

Если максимально упростить, то ее можно описать так: это перемещение химических элементов от одного живого организма в другой при помощи энергии. Элементов этих не так много. Основными являются углерод, кислород, азот и кальций. Перемещаются они в виде различных органических и неорганических веществ и соединений. Преобразование их из одних форм в другие также происходит при помощи энергии.

В научном мире до сих пор нет единого мнения, какие главные для экосистем причины устойчивости. Преобладает мнение, что чем система сложнее, тем она устойчивее. Речь идет о разнообразии видов флоры и фауны, ее составляющих. Чем больше видов, тем сложнее пищевая цепь и есть возможность, в случае необходимости, замещения одного вида другим. На практике, такая теория, не получила однозначного подтверждения. «Простые» иногда бывают гораздо устойчивее «сложных». В качестве примера всегда приводят Большой Барьерный риф в Австралии. Его видовое разнообразие поражает также, как и его хрупкость. Даже незначительное изменение температурного режима, приведет к его гибели.

Читать еще:  Шпунты для крепления откосов

Определяется устойчивость экосистемы, как способность сохранять текущее состояние, несмотря на воздействие и влияние внешних факторов. У биологических она называется гомеостаз, который является обязательным условием существования как отдельной клетки и организма, так и всей биосистемы, независимо от ее величины.

Внешний фактор

Внешнее влияние и воздействие – это единственный необходимый и никем не оспариваемый фактор, заставляющий реагировать, вырабатывать определенные способности и вырабатывать устойчивость экосистем.

Внешнее воздействие, каким бы оно ни было, абиотическим – солнечное излучение, температура, давление и так далее, или биотическим, в том числе антропогенным, действует на все живые организмы, от примитивных до высокоразвитых. Кроме того, оно может оказывать влияние на связи между живыми организмами. В любом случае влиянию подвергается вся система через воздействие на ее части. Она реагирует не сразу. Внутри нее происходят изменения. Например: сокращается поголовье, вплоть до полного исчезновения вида на определенной территории или, наоборот, количественный рост. То есть воздействия, применительно к отдельному живому организму или виду, может иметь негативный и позитивный характер. На что организм реагирует – возникает обратная связь. Приспосабливаемость, адаптация, противодействие отдельной части и связи, приводит к тому, что система получает способность сохранять структуру и функции, становится резистентной. Если под воздействием внешних факторов, она утратила часть структуры или функцию, она может ее восстановить. Такую способность принято называть упругостью. Эти качества дают системе возможность вернуться в прежнее или близкое к нему устойчивое состояние. Они и есть у экосистем основа устойчивости.

«Залатывая» одни дыры, система получает новые. Начинает бороться с ними. И так постоянно. Такое состояние называется динамическим равновесием.

Человеческий фактор

К внешним факторам влияния можно отнести и антропогенный. Хотя, человек вроде бы как находится внутри системы, а не за ее пределами.

Экосистемы, по степени участия в их создании человека, могут быть природные и искусственные. Во втором виде степень влияния человека на ее существование и изменения определяющая. Такой же она может быть и на естественные или природные. Человек может оказывать на них такое влияние, что от «устойчивости» не останется следа. Примеры вокруг нас. И нигде, к сожалению, человек не устранил последствия своего воздействия, не восстановил экосистему.

Уровень вмешательства человека в природу уже достиг той отметки, что в опасности не отдельные экосистемы, а биосфера в целом.

Видео — Устойчивость и динамика экосистем

Устойчивость подработанных бортов и уступов карьеров

В настоящее время для оценки устойчивости откосов бортов (или уступов) карьеров наибольшее применение находит подход, в соответствии с которым предполагается, что в массивах пород уступов и бортов образуется так называемая призма обрушения (призма сползания). Со стороны массива призма обрушения ограничена потенциальной поверхностью разрушения (скольжения), т.е. поверхностью, вдоль которой напряжения, достигнув предельной величины, приведут к разрушению.

Существуют строгие методы решения задачи устойчивости откосов, но они связаны с довольно значительными техническими трудностями и не являются универсальными для инженерных расчетов. Поэтому в практике горного дела получили распространение приближенные методы, в которых форма поверхности скольжения принимается априорно и вдоль нее рассчитывают соотношение сдвигающих и удерживающих сил.

В этом случае условие устойчивости откоса записывается в виде:

где ΣSi — сумма удерживающих сил по наиболее слабой поверхности; ΣTi — сумма сдвигающих сил по той же поверхности.

Их отношение n = ΣSi / ΣTi носит название коэффициента запаса устойчивости. Соответственно, поверхность, по которой n = 1, называют предельной, или поверхностью скольжения.

Cопротивление сдвигу горных пород в общем случае зависит от нормальных напряжений, действующих на площадке сдвига, и прочностных свойств пород:

где τ — сцепление горных пород; σn — нормальное напряжение к площадке сдвига; τ — касательное напряжение, действующее вдоль площадки сдвига; φ — угол внутреннего трения.

Тогда, в условиях плоской задачи, с учетом зависимости (10.1) получим:

где ΣTi и ΣNi — суммы сдвигающих и нормальных (удерживающих) сил по поверхности скольжения; fср = tgφср и τср — средние значения коэффициента трения и сцепления по всей поверхности скольжения; L— длина поверхности (линии в плоской задаче) скольжения.

С использованием изложенных принципов расчет устойчивости откоса производят следующим образом:

Участок массива пород, ограниченный откосом АВС и круглоцилиндрической поверхностью скольжения АС1 и высотой СС1 предельно устойчивого вертикального обнажения пород, делят на ряд одинаковых по ширине а вертикальных полос (рис. 10.2). В качестве точек приложения массы полос Q условно выбирают точку средней их высоты. Разлагая массу полос Q на касательные и нормальные составляющие к поверхностям скольжения, получают Тi и Ni.

Просуммировав раздельно вектора касательных и нормальных компонент (с учетом масштаба) и определив длину линии скольжения L, получают отмеченное выше соотношение запаса устойчивости откоса:

Рис. 10.2. Схема к расчету устойчивости откоса при кругло-цилиндрической поверхности скольжения

В верхней части откоса выделяется вертикальный отрезок СС1 линии скольжения. Эта поверхность (линия) отрыва при поверхностной части откоса формируется в результате воздействия напряжений растяжения (разрыва). Величину ее, обозначенную hπ/2, Г.Л. Фисенко рекомендует определять по зависимости:

Однако, при расчетах устойчивости откосов по изложенной методике сложности возникают при определении местоположения круглоцилиндрической поверхности скольжения. Делают это методом последовательных приближений или с помощью соответствующих графиков и таблиц.

Проведение подземных горных работ в зоне влияния карьера (под дном и в бортах) вызывает перераспределение напряжений в подработанном массиве и существенно изменяет условия устойчивости откосов.

Читать еще:  Как отделать дверные откосы плиткой

Изменение напряженного состояния массива горных пород вызывает, в свою очередь, перераспределение величин и направлений действия (и соотношения) сдвигающих и удерживающих сил. Уменьшение устойчивости подработанных откосов происходит в большинстве случаев за счет снижения удерживающих сил, которые могут уменьшаться врезультате:

♦ снижения прочностных характеристик массива пород в борту;

♦ изменения геометрических параметров откоса борта (увеличение высоты, изменение формы массива борта, увеличение угла наклона откоса и т.д.);

♦ изменения направления действия удерживающих (часто и сдвигающих) усилий.

Степень снижения прочностных характеристик (разупрочнения пород) в результате подработки может быть различной и зависит от конкретных условий месторождения:

интенсивности структурной раздробленности массива;

ориентировки плоскостей ослабления относительно подземных очистных выработок и элементов карьера;

начальной прочности массива;

стадии развития зоны сдвижения;

степени подработки массива;

скорости подработки и др.

Массивы скальных, достаточно упругих, средней трещиноватости пород могут снижать прочность при подработке (в зоне сдвижения) в 1,5—2 раза.

С.Т. Колбенков и Н.И. Митичкина отмечают, что на Ткварчельском угольном месторождении наблюдалось несколько случаев оползней склонов гор, подработанных очистными выработками. Установлено, что оползню предшествует значительное снижение прочностных свойств пород. Нарушение структуры массива в этом случае привело к уменьшению углов внутреннего трения в среднем на 18—20%, а величины сцепления — на 45%.

Можно предположить, что в пластичных, хорошо деформирующихся породах степень разупрочнения массива при подработке несколько ниже. Однако, несомненно, что во всех случаях подработка существенно снижает прочность массива, приводит к его разуплотнению. Учет ослабляющего действия на устойчивость откосов бортов и уступов в результате изменения структуры и прочности массива не вызывает особых трудностей и заключается в определении структурных, прочностных и других характеристик массива общеизвестными полевыми и лабораторными методами.

Более опасны и сложны для учета и прогнозирования два других фактора, определяющих ослабление откосов карьера. Эти факторы проявляются совместно, так как изменение геометрии борта карьера неизбежно вызывает перераспределение действующих в нем напряжений, в частности, изменение величин, направлений действующих напряжений и в соответствии с этим деформаций массива пород борта. Нагляден в этом отношении механизм деформирования откосов и массивов борта, представленный С.Г. Авершиным. Он указывает, что здесь, при прочих равных условиях, решающее значение имеют соотношения горизонтальных составляющих векторов деформации (рис. 10.3).

Рис. 10.3. Сдвижение пород при подработке откосов (по С.Г. Авершину).

Штриховой линией показано положение, к которому будет стремиться подрабатываемый откос. МОН – эпюра напряжений в откосе.

При сдвижении горных пород подработанный откос будет стремиться к положению, показанному штриховой линией, вызывая растягивающие напряжения на участке АО и сжимающие — на участке ВО. И то, и другое в общем случае приводит к снижению устойчивости откоса в целом. Возможно такое взаимное положение откоса и выработки, когда последняя практически не снизит устойчивость откоса.

С.Г. Авершин рекомендует во всех случаях осуществлять подработку откосов в направлении от массива. Эта схема предпочтительна, но она не гарантирует от деформации и обрушения подрабатываемого откоса. Следовательно, во всех случаях необходимо оценивать устойчивость подработанных откосов расчетными методами. Тем не менее, в практике совместной разработки рудных месторождений имеются убедительные подтверждения справедливости приведенной рекомендации С.Г. Авершина.

Опыт совместной разработки месторождения «Норильск-1» карьером «Угольный ручей» и подземным рудником «Заполярный» детально рассмотрен Б.П. Юматовым. Горные работы карьера и рудника движутся навстречу друг другу. Наблюдения за сдвижением массива горных пород и уступов карьера показали, что как в процессе развития зоны обрушения в массиве, так и после выхода ее на поверхность существенных деформаций откосов борта и уступов карьера не отмечалось. Результирующий угол наклона откоса борта составлял 20 — 22° при 35 — 40° по предельному контуру.

При расчетах устойчивости подработанных откосов используются те же методы, что и для оценки неподработанных откосов. Однако при этом следует учитывать указанные ранее факторы, ухудшающие устойчивость откоса.

При определении потенциальной поверхности скольжения откоса в условиях подработки прежде всего необходимо рассмотреть поверхности, проходящие через характерные зоны и точки мульды сдвижения пород, образуемые на поверхности от проведения подземных очистных работ (рис. 10.4).

Рис. 10.4. Формы сдвижения горных пород при подработке склонов (по Г.Л. Фисенко):

а — при выемке пологих пластов, залегающих в прочных породах; б — то же, в слабых и средней прочности породах; в — то же, под склонами, покрытыми мощным чехлом слабых (или рыхлых глинистых) пород

Г.Л. Фисенко считает, что характер деформирования подрабатываемых откосов зависит также от соотношения геометрических и прочностных параметров участвующих в сдвижении массивов пород. Если массив борта сложен прочными породами, то это соответствует условию

наблюдается другая схема сдвижения (см. рис. 10.4 б), обусловленная возникновением площадок скольжения в зонах опорного давления очистной выработки и недостаточным сопротивлением сдвигу по подошве призмы в нижней части откоса. Характерно, что целики, оставленные в выработанном пространстве, в этом случае будут разрушаться от сжатия со сдвигом. Несущая способность целиков в данном случае предполагается значительно ниже, чем при одной вертикальной нагрузке сжатия.

Возможна и третья схема, отмечает Г.Л. Фисенко, которая характеризуется наличием мощной толщи рыхлых пород (наносов) на откосе (склоне). В этом случае подработанная толща пород с наносами прогибается, вследствие чего уменьшается боковой распор в рыхлых породах и нарушается их равновесие.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector