Nmexpertiza.ru

НМ Экспертиза
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как подключить стабилизированный источник питания

Компьютерный блок питания

Встроенный источник электропитания компьютера — устройство, предназначенное для преобразования напряжения переменного тока от сети в напряжение постоянного тока с целью питания компьютера или компьютер-сервера. [1]

В некоторой степени блок питания также выполняет функции стабилизации и защиты от незначительных помех питающего напряжения.

Также, как компонент, занимающий значительную часть внутри корпуса компьютера, несёт в своём составе (либо монтируемые на корпусе БП) компоненты охлаждения частей внутри корпуса компьютера.

Содержание

  • 1 Описание
  • 2 Устройство (схемотехника)
  • 3 Разъёмы БП / потребителей питания
    • 3.1 ATX
  • 4 Стандарты массово выпускаемых БП
    • 4.1 AT (устаревший)
    • 4.2 ATX (современный)
  • 5 Блоки питания ноутбуков
  • 6 Блоки питания для малогабаритных компьютеров
  • 7 Энергоэффективность блока питания и КПД
    • 7.1 Потребляемая и рассеиваемая мощность
  • 8 См. также
  • 9 Примечания
  • 10 Литература
  • 11 Ссылки

Описание [ править | править код ]

Стандарт персонального компьютера (PC-совместимый), согласно спецификации разных лет, должен был обеспечивать выходные напряжения ±5 / ±12 / +3,3 вольт, а также +5 вольт дежурного режима (+5VSB).

  • Основными силовыми цепями компьютеров периодически являлись линии напряжения +3,3, +5 и +12 В. Традиционно, чем выше напряжение в линии, тем большая мощность передаётся по данным цепям.
  • Отрицательные напряжения питания (−5 и −12 В) допускали небольшие токи и в современных материнских платах в настоящее время не используются.
    • Напряжение −5 В использовалось только интерфейсом ISA на материнской плате. Для обеспечения −5 В постоянного тока в ATX и ATX12V версии до 1.2 использовался контакт 20 и белый провод. Это напряжение (а также контакт и провод) не является обязательным уже в версии 1.2 и полностью отсутствует в версиях 1.3 и старше.
    • Напряжение −12 В необходимо лишь для полной реализации стандарта последовательного интерфейса RS-232 с использованием микросхем без встроенного инвертора и умножителя напряжения, поэтому также часто отсутствует.
  • Напряжение +12 В используется для питания наиболее мощных потребителей. Разделение питающих напряжений на 12 и 5 вольт целесообразно как для снижения токов по печатным проводникам плат, так и для снижения потерь энергии на выходных выпрямительных диодах блока питания.
  • Напряжения ±5, +12, +3,3 В дежурного режима используются материнской платой.
  • Для жёстких дисков, оптических приводов, вентиляторов используются напряжения +5 и +12 В.
  • Наиболее мощные потребители энергии (такие, как видеокарта, центральный процессор, северный мост) подключаются через размещённые на материнской плате или на видеокарте вторичные преобразователи с питанием от цепей как +5 В, так и +12 В.
  • Напряжение +3,3 В в блоке питания формируется из напряжения +5 В, а потому существует ограничение суммарной потребляемой мощности по ±5 и +3,3 В.
  • Напряжение на модулях памяти имеет стойкую тенденцию к уменьшению и для DDR4 SDRAM снизилось до 1,2 вольта.

В большинстве случаев, для компьютера в рассматриваемом примере, используется импульсный блок питания, выполненный по полумостовой (двухтактной) схеме. Блоки питания с накапливающими энергию трансформаторами (обратноходовая схема) естественно ограничены по мощности габаритами трансформатора и потому применяются значительно реже. Гораздо чаще встречается схема прямоходового однотактного преобразователя, которая не так ограничена по массо-габаритным показателям. При этом используются те же м/с, что и в обратноходовом преобразователе.

Устройство (схемотехника) [ править | править код ]

Широко распространённая схема импульсного источника питания состоит из следующих частей:

Входные цепи

  • Входной фильтр, предотвращающий распространение импульсных помех в питающую сеть[2] . Также входной фильтр уменьшает бросок тока заряда электролитических конденсаторов при включении БП в сеть (это может привести к повреждению входного выпрямительного моста).
  • В качественных моделях — пассивный (в дешёвых) либо активный корректор мощности (PFC), снижающий нагрузку на питающую сеть.
  • Входной выпрямительный мост, преобразующий переменное напряжение в постоянное пульсирующее.
  • Конденсаторный фильтр, сглаживающий пульсации выпрямленного напряжения.
  • Отдельный маломощный блок питания, выдающий +5 В дежурного режима материнской платы и +12 В для питания микросхемы преобразователя самого БП. Обычно он выполнен в виде обратноходового преобразователя на дискретных элементах (либо с групповой стабилизацией выходных напряжений через оптрон плюс регулируемый стабилитрон TL431 в цепи ОС, либо линейными стабилизаторами 7805/7812 на выходе) или же (в топовых моделях) на микросхеме типа TOPSwitch.

Преобразователь

  • Полумостовой преобразователь на двух биполярных транзисторах.
  • Схема управления преобразователем и защиты компьютера от превышения/снижения питающих напряжений, обычно на специализированной микросхеме (TL494, UC3844, KA5800, SG6105 и пр.).
  • Импульсный высокочастотный трансформатор, который служит для формирования необходимых номиналов напряжения, а также для гальванической развязки цепей (входных от выходных, а также, при необходимости, выходных друг от друга). Пиковые напряжения на выходе высокочастотного трансформатора пропорциональны входному питающему напряжению и значительно превышают требуемые выходные.
  • Цепи обратной связи, которые поддерживают стабильное напряжение на выходе блока питания.
  • Формирователь напряжения PG (Power Good, «напряжение в норме»), обычно на отдельном ОУ.

Выходные цепи

  • Выходные выпрямители. Положительные и отрицательные напряжения (5 и 12 В) используют одни и те же выходные обмотки трансформатора, с разным направлением включения диодов выпрямителя. Для снижения потерь, при большом потребляемом токе, в качестве выпрямителей используют диоды Шоттки, обладающие малым прямым падением напряжения.
  • Дроссель выходной групповой стабилизации. Дроссель сглаживает импульсы, накапливая энергию между импульсами с выходных выпрямителей. Вторая его функция — перераспределение энергии между цепями выходных напряжений. Так, если по какому-либо каналу увеличится потребляемый ток, что снизит напряжение в этой цепи, дроссель групповой стабилизации как трансформатор пропорционально снизит напряжение по другим выходным цепям. Цепь обратной связи обнаружит снижение напряжения на выходе и увеличит общую подачу энергии, что восстановит требуемые значения напряжений.
  • Выходные фильтрующие конденсаторы. Выходные конденсаторы, вместе с дросселем групповой стабилизации интегрируют импульсы, тем самым получая необходимые значения напряжений, которые, благодаря дросселю групповой стабилизации, значительно ниже напряжений с выхода трансформатора.
  • Один (на одну линию) или несколько (на несколько линий, обычно +5 и +3,3) нагрузочных резисторов 10-25 Ом, для обеспечения безопасной работы на холостом ходу.
Читать еще:  Как подключить заблокированный мобильный банк сбербанк

Достоинства такого блока питания:

  • Простая и проверенная временем схемотехника с удовлетворительным качеством стабилизации выходных напряжений.
  • Высокий КПД (65—70 %). Основные потери приходятся на переходные процессы, которые длятся значительно меньшее время, чем устойчивое состояние. Больше всех греются диоды, выпрямляющие 5 и 12 вольт. Силовые транзисторы греются мало.
  • Малые габариты и масса, обусловленные как малым выделением тепла на регулирующем элементе, так и малыми габаритами трансформатора, благодаря тому, что последний работает на высокой частоте.
  • Малая металлоёмкость, благодаря чему мощные импульсные источники питания стоят дешевле трансформаторных, несмотря на бо́льшую сложность.
  • Возможность подключения к сетям с широким диапазоном выбора напряжений и частот, или даже сетям постоянного тока. Благодаря этому возможна унификация техники, производимой для различных стран мира, а значит, и её удешевление при массовом производстве.

Недостатки полумостового блока питания на биполярных транзисторах:

  • При построении схем силовой электроники использование биполярных транзисторов в качестве ключевых элементов снижает общий КПД устройства [3] . Управление биполярными транзисторами требует значительных затрат энергии.
    Всё больше компьютерных блоков питания строится на более дорогих мощных MOSFET. Схемотехника таких компьютерных блоков питания реализована как в виде полумостовых схем, так и обратноходовых преобразователей. Для удовлетворения массогабаритных требований к компьютерному блоку питания в обратноходовых преобразователях используются значительно более высокие частоты преобразования (100—150 кГц).
  • Большое количество намоточных изделий, индивидуально разрабатываемых для каждого типа блоков питания. Такие изделия снижают технологичность изготовления БП.
  • Во многих случаях недостаточная стабилизация выходного напряжения по каналам. Дроссель групповой стабилизации не позволяет с высокой точностью обеспечивать значения напряжений во всех каналах. Более дорогие, а также мощные современные блоки питания формируют напряжения ±5 и 3,3 В с помощью вторичных преобразователей из канала 12 В.

    Принципиальная схема БП персонального компьютера

    Блок питания ST-12/18A стабилизированный с функцией подключения внешнего аккумулятора

      9 300p
    • Описание
    • Отзывы (0)
    • Вопрос-ответ
    • Доставка

    Описание
    Профессиональный стабилизированный источник питания ST-12/18А с новой функцией – подключение внешнего аккумулятора (АКБ) . Предназначен для питания по восемнадцати выходам видеокамер и других нагрузок с номинальным напряжением 12В и номинальным током потребления по каждому выходу до 1,0 А при работе от сети переменного тока 220В. При подключении внешнего аккумулятора блок питания ST-12/18A (UPS) может применяться как резервный источник электропитания. Источник питания предназначен для установки в закрытых помещениях.

    Удобный конструктив, удобство подключения, светодиодная индикация. Обеспечивает электронную защиту каждого выхода от перегрузки по току, в т. ч. короткого замыкания, с восстановлением нормального режима работы после устранения перегрузки, обеспечивает фильтрацию помех для устранения взаимного влияния нагрузок, выполнен в металлическом корпусе с дверцей, закрывающейся на замок.
    Блок питания SPACE TECHNOLOGY ST-12/18A (UPS) — выбор профессионалов!

    Устройство и принцип работы
    Источник питания ST-12/18А выполнен в металлическом корпусе с дверцей, закрывающейся на замок. Корпус источника соединен с клеммой «защитного заземления». Напряжение сети 220 В поступает в источник через штатный 3-х контактный клемник и выключатель. Выходное стабилизированное напряжение 12 Вольт, 18 выходов. Светодиоды, установленные рядом с клемными колодками индицирует наличие (отсутствие) напряжения соответствующего канала. Светодиод на дверце ИП индицирует наличие сети 220 В.
    При перегрузке по току (КЗ выхода) источник отключает питание нагрузки только проблемного канала. После устранения причин перегрузки по току (КЗ), работоспособность соответствующего канала, восстанавливается автоматически. Время восстановления подачи питания на проблемный канал может достигать 60-ти минут и зависит от скорости снижения температуры предохранителя. Источник обеспечивает фильтрацию помех для устранения взаимного влияния различных 18-ти потребителей.

    Технические характеристики
    * Потребляемая мощность по сети 220В: не более 65Вт
    * Суммарный ток нагрузок по всем выходам не должен превышать, А — 18;
    * Выходное напряжение при отсутствии напряжения сети 220 В — 10,5В. 13,5В;
    * Выходное напряжение при наличии напряжения сети 220 В — 13,2В. 13,7;
    * Ток ограничения выхода при коротком предохранитель отключит этот канал, А — 1,2;
    * Напряжение отсечки АКБ от нагрузки 10,4 В;
    * Максимальный ток заряда АКБ 2,0 А;
    * Максимально рекомендуемая емкость АКБ — 40 а/ч, допустимая

    * Рабочая температура: от 0. +40°C;
    * Емкость АКБ: max рекомендуемая емкость АКБ — до 40А/ч
    * Габаритные размеры источника питания: 315 x 235 x 62 мм;
    * Масса нетто / брутто, кг — 2,55 / 2,76.

    При покупке от 5 штук, цена за блок питания ST-12/18А обсуждается индивидуально.

    Стабилизированный блок питания

    Описываемый блок питания собран из доступных элементов. Он почти не требует налаживания, работает в широком интервале подводимого переменного напряжения, снабжен защитой от перегрузки по току.

    Предлагаемый блок питания позволяет получать выходное стабилизированное напряжение от 1 В почти до значения выпрямительного напряжения с вторичной обмотки трансформатора (см. схему). На транзисторе VT1 собран узел сравнения: с движка переменного резистора R3 на базу подается часть образцового напряжения (задается источником образцового напряжения VD5VD6HL1R1), а на эмиттер — выходное напряжение с делителя R14R15. Сигнал рассогласования поступает на усилитель тока, выполненный на транзисторе VT2, который управляет регулирующим транзистором VT4.

    При замыкании на выходе блока питания или чрезмерном токе нагрузки увеличивается падение напряжения на резисторе R8. Транзистор VT3 открывается и шунтирует базовую цепь транзистора VT2, ограничивая тем самым ток нагрузки. Светодиод HL2 сигнализирует о включении защиты от перегрузки по току.

    В случае замыкания включение режима ограничения тока происходит не мгновенно. Дроссель L1 препятствует быстрому нарастанию тока через VT4, а диод VD7 уменьшает бросок напряжения при случайном отключении нагрузки от блока питания.

    Для регулирования тока срабатывания защиты в разрыв цепи между резисторами R7 и R9 необходимо включить переменный резистор сопротивлением 250 Ом, а его движок подключить к базе транзистора VT3. Значение тока можно регулировать в пределах от 400 мА до 1.9 А.

    В источнике питания применим любой трансформатор с напряжением на вторичной обмотке от 9 до 40 В. Однако при малом значении напряжения сопротивление резисторов R1, R2, R9, R13-R14 следует уменьшить примерно в два раза и подобрать стабилитроны VD5, VD6 так, чтобы напряжение на резисторе R1 было примерно равно половине напряжения на конденсаторе C2.

    Дроссель L1 содержит 120 витков провода ПЭЛ 0.6 мм, намотанных на оправке диаметром 8 мм. Транзистор КТ209М (VT1) заменим на КТ502 с любым буквенным индексов, КТ208(Ж-М), КТ209(Ж-М), КТ3107(А,Б). Вместо транзистора КТ815Г (VT2) можно применить любой серии КТ817 или другой аналогичной структуры с допустимым напряжением коллектор-эмиттер не менее напряжения питания. Транзистор VT4 — КТ803А, КТ808А, КТ809А, серий КТ812, КТ819, КТ828, КТ829 или любой мощный с допустимым током коллектора не менее 5 А и допустимым напряжением коллектор-эмиттер больше напряжения питания. Транзисторы VT2 и VT4 необходимо разместить на теплоотводах. Диоды VD1-VD4 — любые выпрямительные с допустимым прямым током больше 5 А и обратным напряжением не менее напряжения на вторичной обмотке трансформатора. Светодиоды можно применить любого типа.

    Узел ограничения тока лучше видоизменить. Для этого следует исключить резистор R7, а резистор R8 поставить переменный. Его сопротивление выбирают таким, чтобы при минимальном токе ограничения падение напряжения на нем составляло около 0.6 В. Рабочий ток резистора должен быть не менее максимального тока ограничения Imax, поэтому его мощность P следует определить по формуле: P=I 2 max*R8. Например, для интервала тока ограничения 0.2. 2 А сопротивление переменного резистора должно быть 3 Ом, а мощность -12 В.

    Блоки питания — драйверы светодиодов

    Предлагаем Вашему вниманию стабилизированные блоки питания светодиодов 12 В английского и китайского производства. Английские блоки питания и драйверы светодиодов представлены маркой Lightec. Блоки питания, изготовленные в Гонконге и на Тайване, представлены прекрасно себя зарекомендовавшими марками: Mean Well и Power Light. Более детально о технических характеристиках блоков питания Вы сможете узнать, перейдя по ссылкам. Данные блоки питания имеют на выходе стабилизированное напряжение 12 Вольт DC, поэтому они предназначены для питания светодиодных изделий, либо светодиодных сборок, которые рассчитаны именно на это напряжение питания. Драйверы светодиодов Lightech имеют на выходе стабилизированный ток (500 мА или 700 мА), поэтому они предназначены для изделий с мощными светодиодами, для питания которых требуется стабилизированная сила тока.

    Блоки питания для светодиодных изделий представляют собой низковольтные источники питания (до 50 Вольт) различной мощности в корпусах с различной степенью пыле-влаго защищенности. Герметичные блоки питания в корпусах с защитой IP65 предназначены для использования на открытом воздухе. Интерьерные блоки питания в корпусах с защитой IP20 предназначены только для использования в помещениях. Светодиодные блоки питания делятся на две группы: блоки питания, стабилизированные по напряжению, и блоки питания, стабилизированные по току. Для питания предлагаемых нашей компанией светодиодных изделий, необходимы блоки питания со стабилизированным напряжением. Для питания мощных светодиодов предлагаем Вашему вниманию блоки питания — драйверы Lightech с током 500 и 700 мА.

    Предлагаемые нами герметичные блоки питания светодиодов на 12 В, имеют степень герметичности корпуса не ниже IP65, поэтому могут быть использованы, как внутри сырых помещений, так и на улице, практически в любых погодных условиях.

    Каждый блок питания светодиодов 12 В имеет следующие встроенные функции:

    • Фильтр сетевых помех
    • Защита от превышения первичного напряжения
    • Защита от превышения силы тока в цепи нагрузки
    • Защита от короткого замыкания

    Рабочий диапазон температур внешней среды: от — 25 по Цельсию до + 50 по Цельсию

    Максимально допустимый диапазон температур: от — 30 по Цельсию до + 65 по Цельсию

    Средний срок службы блоков питания светодиодов до срабатывания на отказ составляет более 50 000 часов.

    Расчет нагрузки для блоков питания

    Блоки питания светодиодов не любят, что называется, «загрузки под завязку». То есть, рассчитывая нагрузку для какого-либо номинала мощности, необходимо делать запас 15 — 20 %. Например, потребляемая мощность светодиодного модуля составляет 0,72 Вт, а номинал блока питания составляет 100 Вт. Прибавим к потребляемой мощности светодиодного модуля 15%, получаем 0,83 Вт. Теперь разделим номинал блока питания на это значение и получим то количество светодиодных модулей, которое можно подключить к блоку питания 100 Вт, чтобы был запас 15%, а именно, 120 светодиодных модулей.

    Помимо расчета оптимального количества светодиодных модулей, необходимо помнить о том, что сечение жил проводов, которые будут идти от блока питания к светодиодам, также было оптимальным. Если сечение жил проводов, проложенных от блока питания до светодиодов, слишком мало, то на конце линии будет происходить падение напряжения из-за внутреннего сопротивления самих проводов. При падении напряжения на проводящей линии не только снижается яркость свечения светодиодов, подключенных к ней, но и возрастает нагрузка на блок питания. Схема вычисления сечения жил проводов также приводится на нашем сайте. Чтобы подключить светодиодные изделия к блокам, предпочтение следует отдать только двум способам: пайке и подключению посредством винтового соединения. Эти два способа подключения являются наиболее надежными. Все соединенные узлы, согласно требованиям ПУЭ, должны находиться в распаечных коробках.

    Правила установки блоков питания светодиодов

    Как и любое другое электронное устройство, использующее для работы электрический ток, блоки питания светодиодов неизбежно будут нагреваться в процессе работы. В герметичных блоках питания для светодиодов роль радиатора-теплообменника, как правило, исполняет корпус блока питания, именно поэтому очень часто он выполнен в виде воздушного радиатора. Чтобы процесс теплообмена проходил эффективно, вентиляция корпуса блока питания должна быть достаточной для его эффективного охлаждения.

    Если Вы используете блоки питания небольшой мощности (до 60 Вт), то вопрос охлаждения блоков питания не стоит так остро, так как тепловыделение не столь велико. При использовании мощных блоков питания (100 Вт и более) обязательно обеспечьте им хорошую вентиляцию. Для того, чтобы блоки питания работали долго и без отказов, установку мощных блоков питания светодиодов следует проводить, имея в виду несколько простых требований, по сути являющихся логическим продолжением выше сказанного.

    1. Не устанавливайте мощные блоки питания в закрытые коробки. Объема воздуха, скорее всего, будет недостаточно для эффективного охлаждения корпуса блока питания. Устанавливайте мощные блоки питания в хорошо проветриваемых местах.

    2. Не устанавливайте блоки питания вплотную друг к другу. Расстояние между блоками питания должно быть не менее 100 мм. При меньшем расстоянии радиатор может дополнительно нагреваться от теплового излучения (в том числе инфракрасного диапазона) соседних блоков питания.

    3. Не устанавливайте мощные блоки питания вблизи от источников высокой температуры и легко воспламеняющихся объектов.

    4. Не устанавливайте блоки питания светодиодов в местах, которые заполняются водой во время дождя или таяния снега весной. Уровня герметичности корпуса блоков питания достаточно для защиты электроники от прямого попадания атмосферных осадков, но они не предназначены для работы под водой!

    5. Не устанавливайте блоки питания светодиодов в места, которые покрываются слоем снега зимой. От тепла, вырабатываемого блоком, в слое снега образуется проталина с плотными стенками, и блок питания фактически оказывается в не вентилируемом замкнутом пространстве. Как было сказано выше, длительное пребывание в не вентилируемом замкнутом пространстве может привести к перегреву электронного устройства и к выходу его из строя.

    6. Если на входе блока питания на проводах есть обозначения «линия», «нейтраль» и «земля», то подключить устройство к сети нужно именно таким образом.

    7. Блоки питания большой мощности, как правило, имеют два, три или четыре отвода для подключения светодиодных изделий, рассчитанных на 12 Вольт DC. При этом все «плюсовые» и все «минусовые» провода каждого из отводов подключены внутри блока питания параллельно, каждый к своему полюсу: все «плюсовые» выходят из одной точки «плюс», все «минусовые» также выходят из одной точки «минус». Большое количество отводов сделано для того, чтобы было удобнее производить подключение светодиодов к блоку питания. В этом случае вся масса светодиодов может быть разделена на две, три или четыре части. Соответственно, сечение проводов в каждом из отводов рассчитано только на определенную часть от общей нагрузки. Не следует об этом забывать. Именно поэтому, нельзя подключать всю нормируемую для данного блока питания нагрузку на какой-либо один из отводов (несмотря на то, что все провода приходят от одного источника). Вся нормируемая нагрузка может быть подключена только ко всем существующим отводам, соединенным параллельно, то есть, объединенным в одну шину.

    8. Блоки питания светодиодов, как правило, имеют высокий пусковой ток. При использовании большого количества мощных блоков питания используйте устройства плавного пуска и пусковые автоматы, предназначенные для включения устройств с высокими пусковыми токами.

    голоса
    Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector